Most cited article - PubMed ID 31505771
A DAO1-Mediated Circuit Controls Auxin and Jasmonate Crosstalk Robustness during Adventitious Root Initiation in Arabidopsis
Indole-3-acetic acid (IAA), the most common form of auxin, is involved in a great range of plant physiological processes. IAA is synthesized from the amino acid tryptophan and can be transported and inactivated in a myriad of ways. Despite intense research efforts, there are still dark corners in our comprehension of IAA metabolism and its interplays with other pathways. Genetic screens are a powerful tool for unbiasedly looking for new players in a given biological process. However, pleiotropism of auxin-related phenotypes and indirect effects make it necessary to incorporate additional screening steps to specifically find mutants affected in IAA homeostasis. We previously developed and validated a high-throughput methodology to simultaneously quantify IAA, key precursors, and inactive forms from as little as 10 mg of fresh tissue. We have carried out a genetic screening to identify mutants involved in IAA metabolism. Auxin reporters DR5pro:VENUS and 35Spro:DII-VENUS were EMS-mutagenized and subjected to a parallel morphological and reporter-signal pre-screen. We then obtained the auxin metabolite profile of 325 M3 selected lines and used multivariate data analysis to identify potential IAA-metabolism mutants. To test the screening design, we identified the causal mutations in three of the candidate lines by mapping-by-sequencing: dii365.3, dii571.1 and dr693. These carry new alleles of CYP83A1, MIAO, and SUPERROOT2, respectively, all of which have been previously involved in auxin homeostasis. Our results support the suitability of this approach to find new genes involved in IAA metabolism.
- MeSH
- Arabidopsis * genetics metabolism MeSH
- Phenotype MeSH
- Indoleacetic Acids * metabolism MeSH
- Mutation * genetics MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Growth Regulators metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- indoleacetic acid MeSH Browser
- Indoleacetic Acids * MeSH
- Arabidopsis Proteins MeSH
- Plant Growth Regulators MeSH
Adventitious rooting is a de novo organogenesis process that enables plants to propagate clonally and cope with environmental stresses. Adventitious root initiation (ARI) is controlled by interconnected transcriptional and hormonal networks, but there is little knowledge of the genetic and molecular programs orchestrating these networks. Thus, we have applied genome-wide transcriptome profiling to elucidate the transcriptional reprogramming events preceding ARI. These reprogramming events are associated with the down-regulation of cytokinin (CK) signaling and response genes, which could be triggers for ARI. Interestingly, we found that CK free base (iP, tZ, cZ, and DHZ) content declined during ARI, due to down-regulation of de novo CK biosynthesis and up-regulation of CK inactivation pathways. We also found that MYC2-dependent jasmonate (JA) signaling inhibits ARI by down-regulating the expression of the CYTOKININ OXIDASE/DEHYDROGENASE1 (CKX1) gene. We also demonstrated that JA and CK synergistically activate expression of the transcription factor RELATED to APETALA2.6 LIKE (RAP2.6L), and constitutive expression of this transcription factor strongly inhibits ARI. Collectively, our findings reveal that previously unknown genetic interactions between JA and CK play key roles in ARI.
- Keywords
- Adventitious roots, Arabidopsis, CKX1, MYC2, RAP2.6L, cytokinins, jasmonate, light, vegetative propagation,
- MeSH
- Arabidopsis * genetics metabolism MeSH
- Cyclopentanes MeSH
- Plant Roots genetics metabolism MeSH
- Oxylipins MeSH
- Arabidopsis Proteins * genetics metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Transcription Factors genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cyclopentanes MeSH
- jasmonic acid MeSH Browser
- Oxylipins MeSH
- Arabidopsis Proteins * MeSH
- RAP2.6L protein, Arabidopsis MeSH Browser
- Transcription Factors MeSH
Vegetative propagation relies on the capacity of plants to regenerate de novo adventitious roots (ARs), a quantitative trait controlled by the interaction of endogenous factors, such as hormones and environmental cues among which light plays a central role. However, the physiological and molecular components mediating light cues during AR initiation (ARI) remain largely elusive. Here, we explored the role of red light (RL) on ARI in de-rooted Norway spruce seedlings. We combined investigation of hormone metabolism and gene expression analysis to identify potential signaling pathways. We also performed extensive anatomical characterization to investigate ARI at the cellular level. We showed that in contrast to white light, red light promoted ARI likely by reducing jasmonate (JA) and JA-isoleucine biosynthesis and repressing the accumulation of isopentyl-adenine-type cytokinins. We demonstrated that exogenously applied JA and/or CK inhibit ARI in a dose-dependent manner and found that they possibly act in the same pathway. The negative effect of JA on ARI was confirmed at the histological level. We showed that JA represses the early events of ARI. In conclusion, RL promotes ARI by repressing the accumulation of the wound-induced phytohormones JA and CK.
- Keywords
- Picea abies, adventitious roots, auxin, conifers, cytokinins, jasmonate, red light, root development,
- Publication type
- Journal Article MeSH