Most cited article - PubMed ID 33916766
RAD51 Inhibition Induces R-Loop Formation in Early G1 Phase of the Cell Cycle
R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex. However, how R-loops are eliminated to allow the sequential restart of transcription and replication in this pathway remains elusive. Here, we identified the human DDX17 helicase as a factor that associates with R-loops and counteracts R-loop-mediated replication stress to preserve genome stability. We show that DDX17 unwinds R-loops in vitro and promotes MUS81-dependent restart of R-loop-stalled forks in human cells in a manner dependent on its helicase activity. Loss of DDX17 helicase induces accumulation of R-loops and the formation of R-loop-dependent anaphase bridges and micronuclei. These findings establish DDX17 as a component of the MUS81-LIG4-ELL pathway for resolution of R-loop-mediated transcription-replication conflicts, which may be involved in R-loop unwinding.
- MeSH
- DEAD-box RNA Helicases genetics metabolism MeSH
- DNA Helicases metabolism MeSH
- DNA metabolism MeSH
- Endonucleases metabolism MeSH
- Humans MeSH
- R-Loop Structures * MeSH
- DNA Replication * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DDX17 protein, human MeSH Browser
- DEAD-box RNA Helicases MeSH
- DNA Helicases MeSH
- DNA MeSH
- Endonucleases MeSH