Most cited article - PubMed ID 35362465
On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy
Heterogeneity in cryoEM is essential for capturing the structural variability of macromolecules, reflecting their functional states and biological significance. However, estimating heterogeneity remains challenging due to particle misclassification and algorithmic biases, which can lead to reconstructions that blend distinct conformations or fail to resolve subtle differences. Furthermore, the low signal-to-noise ratio inherent in cryo-EM data makes it nearly impossible to detect minute structural changes, as noise often obscures subtle variations in macromolecular projections. In this paper, we investigate the use of p-values associated with the null hypothesis that the observed classification differs from a random partition of the input data set, thereby providing a statistical framework for determining the number of distinguishable classes present in a given data set.
- Keywords
- 3D classification, cryo-electron microscopy, reproducibility analysis, statistical significance, structural heterogeneity,
- MeSH
- Algorithms MeSH
- Cryoelectron Microscopy * methods MeSH
- Macromolecular Substances * chemistry MeSH
- Signal-To-Noise Ratio MeSH
- Single Molecule Imaging * methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Macromolecular Substances * MeSH
Image-processing pipelines require the design of complex workflows combining many different steps that bring the raw acquired data to a final result with biological meaning. In the image-processing domain of cryo-electron microscopy single-particle analysis (cryo-EM SPA), hundreds of steps must be performed to obtain the three-dimensional structure of a biological macromolecule by integrating data spread over thousands of micrographs containing millions of copies of allegedly the same macromolecule. The execution of such complicated workflows demands a specific tool to keep track of all these steps performed. Additionally, due to the extremely low signal-to-noise ratio (SNR), the estimation of any image parameter is heavily affected by noise resulting in a significant fraction of incorrect estimates. Although low SNR and processing millions of images by hundreds of sequential steps requiring substantial computational resources are specific to cryo-EM, these characteristics may be shared by other biological imaging domains. Here, we present Scipion, a Python generic open-source workflow engine specifically adapted for image processing. Its main characteristics are: (a) interoperability, (b) smart object model, (c) gluing operations, (d) comparison operations, (e) wide set of domain-specific operations, (f) execution in streaming, (g) smooth integration in high-performance computing environments, (h) execution with and without graphical capabilities, (i) flexible visualization, (j) user authentication and private access to private data, (k) scripting capabilities, (l) high performance, (m) traceability, (n) reproducibility, (o) self-reporting, (p) reusability, (q) extensibility, (r) software updates, and (s) non-restrictive software licensing.
- Keywords
- cryo-EM, extensible, integration, multidomain, software-framework, workflows,
- Publication type
- Journal Article MeSH
The new developments in Cryo-EM Single Particle Analysis are helping us to understand how the macromolecular structure and function meet to drive biological processes. By capturing many states at the particle level, it is possible to address how macromolecules explore different conformations, information that is classically extracted through 3D classification. However, the limitations of classical approaches prevent us from fully understanding the complete conformational landscape due to the reduced number of discrete states accurately reconstructed. To characterize the whole structural spectrum of a macromolecule, we propose an extension of our Zernike3D approach, able to extract per-image continuous flexibility information directly from a particle dataset. Also, our method can be seamlessly applied to images, maps or atomic models, opening integrative possibilities. Furthermore, we introduce the ZART reconstruction algorithm, which considers the Zernike3D deformation fields to revert particle conformational changes during the reconstruction process, thus minimizing the blurring induced by molecular motions.
- MeSH
- Algorithms * MeSH
- Cryoelectron Microscopy methods MeSH
- Macromolecular Substances chemistry MeSH
- Molecular Conformation MeSH
- Molecular Structure MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Macromolecular Substances MeSH