Most cited article - PubMed ID 36866838
Isatuximab in combination with cemiplimab in patients with relapsed/refractory multiple myeloma: A phase 1/2 study
MP0250 is a designed ankyrin repeat protein that specifically inhibits both vascular endothelial growth factor A (VEGF-A) and hepatocyte growth factor (HGF), aiming at potentiating cancer therapy by disrupting the tumour microenvironment. Encouraging results from a phase 1 trial of MP0250 in patients with solid tumours prompted further investigation in multiple myeloma (MM) as both MP0250 targets are reported to be drivers of MM pathogenesis. In this open-label, single-arm phase 1b/2 study (NCT03136653) in patients with proteasome inhibitor- and/or immunomodulatory drug-relapsed or refractory MM, MP0250 was administered every 3 weeks with standard bortezomib/dexamethasone regimen. Thirty-three patients received at least one dose of MP0250. The most frequent treatment-related adverse events were arterial hypertension (58.1%), thrombocytopenia (32.3%), proteinuria (29.0%) and peripheral oedema (19.4%). Of the 28 patients evaluable for response (median age: 60 [range 44-75]), nine achieved at least partial response, corresponding to an overall response rate of 32.1% (95% confidence interval [CI]: 17.9%, 50.7%), with a median duration of response of 8 months (95% CI 5-NR). An additional three patients achieved minimal response and nine stable diseases as the best overall response. Overall median progression-free survival was 4.2 months (95% CI 1.9-7.1). These findings are in line with the results of recent trials testing new agents on comparable patient cohorts and provide initial evidence of clinical benefit for patients with refractory/relapsed MM treated with MP0250 in combination with bortezomib/dexamethasone. Further clinical evaluation in the emerging MM treatment landscape would be required to confirm the clinical potential of MP0250.
- Keywords
- DARPin, MP0250, anti‐HGF, anti‐VEGF, refractory/relapsed multiple myeloma,
- Publication type
- Journal Article MeSH