Nejvíce citovaný článek - PubMed ID 5655425
This study investigated the metabolic adaptive responses to As contamination and As co-contamination with cadmium, lead, and zinc in the leaves and tubers of cherry radish (Raphanus sativus var. sativus Pers.). The response was assessed by measuring malondialdehyde levels, total phenolic content (TPC), total anthocyanin pigment (TAC), growth and stress phytohormone concentration, and free amino acid content. The characteristic As accumulation of single contamination resulted in a decrease in tuber growth. However, in the case of co-contamination, As uptake was influenced by the presence of other potentially toxic elements (PTEs), mainly zinc, with no significant effect on growth. Both contaminated treatments exhibited significant differences in metabolite levels among the organs, along with notable changes in their contents. Increases in malondialdehyde, TPC, and TAC indicated induced oxidative stress and an antioxidant response that was more pronounced by As co-contamination. Also, the results for phytohormones, which showed both increases and decreases, along with selected free amino acids (which showed increases), demonstrated a more significant influence of As co-contamination. Based on these findings, it can be concluded that the response of cherry radish to contaminated treatments exhibited significant differences in the studied parameters, along with variability in the results, reflecting the extent of the effects of PTEs that induce oxidative stress.
- Klíčová slova
- amino acids, hormones, metalloid, stress, vegetable,
- MeSH
- aminokyseliny * metabolismus MeSH
- anthokyaniny metabolismus MeSH
- antioxidancia metabolismus MeSH
- arsen * metabolismus MeSH
- hlízy rostlin metabolismus růst a vývoj MeSH
- látky znečišťující půdu metabolismus toxicita MeSH
- listy rostlin metabolismus účinky léků MeSH
- malondialdehyd metabolismus MeSH
- oxidační stres účinky léků MeSH
- Raphanus * metabolismus růst a vývoj účinky léků MeSH
- regulátory růstu rostlin * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny * MeSH
- anthokyaniny MeSH
- antioxidancia MeSH
- arsen * MeSH
- látky znečišťující půdu MeSH
- malondialdehyd MeSH
- regulátory růstu rostlin * MeSH
Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress. Additionally, exogenous MT and AsA also improved antioxidant enzyme activities, promoted regeneration of AsA and GSH, decreased reactive oxygen species contents, suppressed Na+ accumulation, and improved the K+/Na+ ratio of maize seedlings. Additionally, the AsA inhibitor lycorine decreased the endogenous content of AsA and eliminated the positive effects of MT, while the MT inhibitor p-chlorophenyl alanine (CPA) reduced the endogenous content of MT, which could not eliminate the promoting effects of AsA. The results suggested that AsA may act as a downstream signal involved in the regulatory effects of MT on maize under salinity stress.
- Klíčová slova
- AsA–GSH cycle, ascorbic acid, ionic homeostasis, maize, melatonin, salinity stress,
- MeSH
- antioxidancia * metabolismus farmakologie MeSH
- fotosyntéza * účinky léků MeSH
- kukuřice setá * účinky léků metabolismus fyziologie MeSH
- kyselina askorbová * farmakologie metabolismus MeSH
- melatonin * farmakologie metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- salinita MeSH
- semenáček účinky léků metabolismus růst a vývoj MeSH
- sodík metabolismus MeSH
- tolerance k soli * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- kyselina askorbová * MeSH
- melatonin * MeSH
- reaktivní formy kyslíku MeSH
- sodík MeSH
Cadmium stress (CS) induced the peroxide damage and inhibited wheat photosynthetic capacity and growth. Compared to CS, selenium (Se) application plus CS bolstered chlorophyll and carotenoid contents, photosynthetic rate, the maximum photochemical efficiency of PSII, the quantum yield of PSII photochemistry, and photochemical quenching, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and gamma-glutamylcysteine synthetase activities, ascorbic acid and glutathione contents, AsA/dehydroascorbic acid and GSH/oxidized glutathione, and decreased nonphotochemical quenching (qN), antioxidant biomarkers malondialdehyde and hydrogen peroxide contents, and electrolyte leakage (EL). At the same time, Se alone declined antioxidant biomarkers contents, qN and EL, and augmented the rest of the aforementioned indexes. Our research implied that Se upregulated wheat's antioxidant capacity. In this way, Se improved wheat photosynthetic performance and growth, especially for 10 μM sodium selenite (Na2SeO3). Consequently, 10 μM Na2SeO3 may be considered a useful exogenous substance to reinforce wheat cadmium tolerance.
- Klíčová slova
- Triticum aestivum, antioxidant enzyme, cadmium treatment, nonenzymatic antioxidant, sodium selenite,
- Publikační typ
- časopisecké články MeSH
This study analyzed physiological and molecular characteristics associated with the resistance to aging or anti-senescence in Camellia oleifera Abel. Trees over 100 years old (ancient trees) were compared with those about 30 years old (mature trees). Total chlorophylls, chlorophyll a/b ratio, and hydrogen peroxide concentrations in ancient tree leaves were significantly higher than in their counterparts. Significantly higher activities of superoxide dismutase, peroxidase, and catalase were detected in ancient tree leaves. Nine Chl a/b-binding protein genes, 15 antioxidant enzyme genes, 21 hormone-related genes, and 301 stress-related genes were upregulated, and 42 protein-degradation genes were downregulated in ancient tree leaves. By increasing chlorophyll content and antioxidant enzyme activities and regulating the ageing-related genes expression, ancient C. oleifera leaves maintained remarkable vitality. Although further research is needed, our study may shed some light on how ancient C. oleifera trees can resist ageing and sustain their healthy growth.
- Klíčová slova
- Camellia oleifera, anti-ageing, anti-senescence, plant senescence,
- Publikační typ
- časopisecké články MeSH
Dunaliella salina is a rich source of carotenoids. Carotenoid production is induced under specific conditions, i.e., high light intensity, high salt concentration, nutrient limitation, and suboptimal temperatures in this microalga. The control of environmental factors is vital for high productivity of carotenoids. In this paper, the effect of different ethanol concentrations in combination with nitrogen deficiency was investigated to induce carotenoid production in D. salina CCAP 19/18. Also, some biochemical and molecular parameters were investigated in response to ethanol in the cells. It was shown that ethanol at 0.5% concentration increased cell number but, at 5% concentration, reduced cell viability compared to the control. The highest carotenoid production was achieved at 3% ethanol concentration, which was 1.46 fold higher than the nitrogen deficiency condition. Investigation of the 3 carotenoid biosynthesis genes revealed that their expression levels increased at 3% ethanol concentration, and the phytoene synthase gene was the most upregulated one. Lipid peroxidation increased at both 3% and 5% ethanol concentrations. At 3% concentration, the activity of catalase and superoxide dismutase increased, but no significant changes were seen at 5% ethanol concentration. Peroxidase activity reduced at both 3% and 5% concentrations. Moreover, proline and reducing sugar content increased at 3% concentration while decreased at 5% ethanol concertation. The results showed that at 3% ethanol concentration, higher carotenoid productivity was associated with an increase in other intracellular responses (molecular and biochemical). Ethanol as a controllable element may be beneficial to increase carotenoid production even under inappropriate environmental conditions in D. salina.
- Klíčová slova
- Antioxidant, Carotenoid, Dunaliella salina, Ethanol, Phytoene synthase,
- MeSH
- antioxidancia * MeSH
- dusík MeSH
- karotenoidy * metabolismus MeSH
- superoxiddismutasa metabolismus MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- dusík MeSH
- karotenoidy * MeSH
- superoxiddismutasa MeSH
An efficient method to instantly assess drought-tolerant plants after germination is using osmoregulation in tissue culture media. In this study, the responses of three Iranian melon genotypes to sorbitol (0.1, 0.2, and 0.4 M) or polyethylene glycol (PEG) (0.009, 0.012, and 0.015 M) were evaluated as drought stress simulators in MS medium. 'Girke' (GIR), 'Ghobadloo' (GHO), and 'Toghermezi' (TOG) were the genotypes. GIR is reputed as a drought-tolerant genotype in Iran. The PEG or sorbitol decreased the coleoptile length, fresh weight, and photosynthetic pigments content while enhancing proline and malondialdehyde (MDA) contents. Protein content and antioxidant enzyme activity were utterly dependent on genotype, osmotic regulators, and their concentration. Coleoptile length, root and shoot fresh weight, root dry weight, proline and MDA content, and guaiacol peroxidase (GPX) activity can be used as indicators for in vitro screening of Cucumis melo L. genotypes. The results showed that sorbitol mimics drought stress better than PEG. Overall, our findings suggest that in vitro screening could be an accurate, rapid, and reliable methodology for evaluating and identifying drought-tolerant genotypes.
- Klíčová slova
- evaluation melon, osmoregulation, simulation, water deficit,
- Publikační typ
- časopisecké články MeSH
Cadmium (Cd) is one the leading environmental contaminants. The Cd toxicity and its potential stabilization strategies have been investigated in the recent years. However, the combined effects of biochar and microorganisms on the adsorption of Cd and maize plant physiology, still remained unclear. Therefore, this experiment was conducted to evaluate the combined effects of biochar (BC) pyrolyzed from (maize-straw, cow-manure, and poultry-manure, and microorganisms [Trichoderma harzianum (fungus) and Bacillus subtilis (bacteria)], on plant nutrient uptake under various Cd-stress levels (0, 10, and 30 ppm). The highest level of Cd stress (30 ppm) caused the highest reduction in maize plant biomass, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate as compared to control Cd0 (0 ppm). The sole application of BC and microorganisms significantly improved plant growth, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate and caused a significant reduction in root and shoot Cd. However, the co-application of BC and microorganisms was more effective than the sole applications. In this regard, the highest improvement in plant growth and carbon assimilation, and highest reduction in root and shoot Cd was recorded from co-application of cow-manure and combined inoculation of Trichoderma harzianum (fungus) + Bacillus subtilis (bacteria) under Cd stress. However, due to the aging factor and biochar leaching alkalinity, the effectiveness of biochar in removing Cd may diminish over time, necessitating long-term experiments to improve understanding of biochar and microbial efficiency for specific bioremediation aims.
- Klíčová slova
- biochar, cadmium toxicity, crop growth, plant physiology, soil pollution,
- Publikační typ
- časopisecké články MeSH
In this study, we observed the effect of the application of soil dust enriched with risk elements (Cd, Pb, As and Zn) to leaf surfaces of lettuce (Lactuca sativa var. capitata) while it was grown under hydroponic conditions. This study aimed to determine how low soil dust particulate matter (PM) doses affected the activity of or damaged the photosynthetic apparatus and how the uptake of risk elements was associated with both epigenetic changes (5-methylcytosine content, i.e., 5mC) and stress metabolism. During the study, we obtained many results pertaining to risk element contents and biochemical (total phenolic content (TPC), malondialdehyde (MDA) content and the amount of free amino acids (AAs)) and physiological (photosynthesis parameters: net photosynthetic rate, transpiration rate, intercellular CO2 concentration, stomatal conductance, instantaneous water-use efficiency, maximum quantum yield of PSII, chlorophyll and carotenoid contents, and leaf water potential (WP)) plant features. The results showed an increase in MDA and 5mC. However, the transpiration rate, WP and free AAs decreased. In conclusion, contamination by very low doses of soil dust PM had no direct or significant effect on plant fitness, as shown by the TPC and 5mC content, which indicates that plants can overcome the oxidative stress caused by the accumulation of risk elements. From the above, we propose the use of epigenetic changes as biomarkers of potential changes in the activation of plant metabolism under stress caused by environmental pollution.
- MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza MeSH
- listy rostlin metabolismus MeSH
- pevné částice * metabolismus MeSH
- prach * MeSH
- půda chemie MeSH
- rostliny metabolismus MeSH
- salát (hlávkový) metabolismus MeSH
- voda metabolismus MeSH
- znečištění životního prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- pevné částice * MeSH
- prach * MeSH
- půda MeSH
- voda MeSH
Many studies have been conducted on maize to study the effect of drought on yield at the flowering stage, but understanding biochemical and photosynthetic response against drought at the seedling stage needs to be well established. Thus, to understand differential changes and interaction of biochemical and photosynthetic parameters at the seedling stage under drought, a greenhouse experiment with twelve maize genotypes under severe drought (30% field capacity) and irrigated (90-100% field capacity) conditions were performed. Drought differentially altered biochemical and photosynthetic parameters in all genotypes. A sharp increase in hydrogen peroxide, malondialdehyde (MDA), and total antioxidant capacity (TAOC) were seen and a positive association between H2O2 and TAOC, and MDA and transpiration rate (E) was observed under drought. Nonphotochemical quenching increased under drought to avoid the photosystem damage. PCA biplot analysis showed that reducing E and increasing photosynthetic efficiency would be a better drought adaptation mechanism in maize at the seedling stage.
- Klíčová slova
- chlorophyll fluorescence, drought, gas exchange, interaction, maize,
- Publikační typ
- časopisecké články MeSH
The impact of elevated temperature at the reproductive stage of a crop is one of the critical limitations that influence crop growth and productivity globally. This study was aimed to reveal how sowing time and changing field temperature influence on the regulation of oxidative stress indicators, antioxidant enzymes activity, soluble sugars (SS), and amino acids (AA) in Indian Mustard. The current study was carried out during the rabi 2017-2018 and 2018-2019 where, five varieties of mustard viz. Pusa Mustard 25 (PM-25) (V1), PM-26 (V2), BPR-541-4 (V3), RH-406 (V4), and Urvashi (V5) were grown under the field conditions on October 30 (normal sowing; S1), November 18 (late sowing; S2) and November 30 (very late sowing; S3) situations. The S1 and S3 plants, at mid-flowering stage, showed a significant variation in accumulation of SS (8.5 and 17.3%), free AA (235.4 and 224.6%), and proline content (118.1 and 133%), respectively, and played a crucial role in the osmotic adjustment under stress. The results showed that S3 sowing, exhibited a significant induction of the hydrogen peroxide (H2O2) (110.2 and 86.6%) and malondialdehyde (23.5 and 47.5%) concentrations, respectively, which indicated the sign of oxidative stress in plants. Interestingly, the polyphenol oxidase, peroxidase, superoxide dismutase, and catalase enzyme activities were also significantly increased in S3 plants compared to S1 plants, indicating their significant roles in ameliorating the oxidative stress. Furthermore, the concentration of fatty acid levels such as palmitic, stearic, oleic, and linoleic acids level also significantly increased in S3 plants, which influenced the seed and oil quality. The study suggests that the late sowing significantly impaired the biochemical mechanisms in Indian mustard. Further, the mustard variety V4 (RH-406) was found to be effective for cultivation as well as environmental stress adoption in Indian soils, and it could be highly useful in breeding for developing heat-tolerant genotypes for ensuring the food security.
- Klíčová slova
- antioxidant defense, climate change, fatty acid, osmoprotectant, oxidative stress, sowing time,
- Publikační typ
- časopisecké články MeSH