Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
- Klíčová slova
- Arabidopsis thaliana, Chlorophylls, Green light, Structure and function of photosystem II, Thermal stability, Thylakoid membrane,
- MeSH
- adaptace oční fyziologie MeSH
- Arabidopsis metabolismus MeSH
- chlorofyl metabolismus MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- prenylace MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém II - proteinový komplex MeSH
- světlosběrné proteinové komplexy MeSH