Nejvíce citovaný článek - PubMed ID 28314118
Human 17β-hydroxysteroid dehydrogenase type 10 is a multifunctional protein involved in many enzymatic and structural processes within mitochondria. This enzyme was suggested to be involved in several neurological diseases, e.g., mental retardation, Parkinson's disease, or Alzheimer's disease, in which it was shown to interact with the amyloid-beta peptide. We prepared approximately 60 new compounds based on a benzothiazolyl scaffold and evaluated their inhibitory ability and mechanism of action. The most potent inhibitors contained 3-chloro and 4-hydroxy substitution on the phenyl ring moiety, a small substituent at position 6 on the benzothiazole moiety, and the two moieties were connected via a urea linker (4at, 4bb, and 4bg). These compounds exhibited IC50 values of 1-2 μM and showed an uncompetitive mechanism of action with respect to the substrate, acetoacetyl-CoA. These uncompetitive benzothiazolyl inhibitors of 17β-hydroxysteroid dehydrogenase type 10 are promising compounds for potential drugs for neurodegenerative diseases that warrant further research and development.
- Klíčová slova
- 17β-hydroxysteroid dehydrogenase type 10, ABAD, Alzheimer’s disease, benzothiazole, inhibitor, neurodegeneration,
- MeSH
- 3-hydroxyacyl-CoA-dehydrogenasy antagonisté a inhibitory chemie MeSH
- aktivace enzymů MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- benzothiazoly chemie MeSH
- inhibitory enzymů chemie farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- močovina chemie farmakologie MeSH
- molekulární struktura MeSH
- rekombinantní proteiny MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3-hydroxyacyl-CoA-dehydrogenasy MeSH
- benzothiazoly MeSH
- HSD17B10 protein, human MeSH Prohlížeč
- inhibitory enzymů MeSH
- močovina MeSH
- rekombinantní proteiny MeSH
: It has long been established that mitochondrial dysfunction in Alzheimer's disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17β-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17β-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.
- Klíčová slova
- 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), amyloid binding alcohol dehydrogenase (ABAD), benzothiazole, Alzheimer’s disease (AD), amyloid-beta peptide (Aβ), mitochondria,
- MeSH
- 17-hydroxysteroidní dehydrogenasy antagonisté a inhibitory chemie MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- amyloidní beta-protein metabolismus MeSH
- benzothiazoly chemie MeSH
- buněčné linie MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- močovina chemie MeSH
- molekulární struktura MeSH
- racionální návrh léčiv MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 17-hydroxysteroidní dehydrogenasy MeSH
- amyloidní beta-protein MeSH
- benzothiazoly MeSH
- močovina MeSH