The adverse effects of cadmium on plants are accompanied by a limitation of photosynthesis, due to the production of reactive oxygen species, leading to oxidative damage to PSII and the disruption of key protein complexes involved in photosynthetic pathways. We investigated the effects of cadmium stress combined with high light in Arabidopsis thaliana, as dependent on the cadmium dose applied. The aim was to investigate the combined effect of the two stressors on photochemical processes with the hypothesis that Cd stress enhances the negative effect of the high light. The plants were treated with 0, 1, 10, and 50 mM Cd added as CdCl2 solution to soil (potted plants), and a high light stress. The highest dose (50 mM) induced a significant oxidative stress, reduced chlorophyll fluorescence parameters related to PSII functioning and increased energy dissipation mechanisms. Elevated Cd contents impaired the electron transport and limited PSII efficiency. OJIP analysis revealed a Cd-induced K- and L-band appearance documenting LHC-PSII limitation. The combination of Cd and high light stress resulted in the photoinhibition effects in PSII, i.e., a decrease in potential and effective yields of PSII.
- Keywords
- OJIP, cadmium, chlorophyll fluorescence, heavy metal, nonphotochemical quenching, photoinhibition, protective mechanisms,
- MeSH
- Arabidopsis * drug effects radiation effects physiology metabolism MeSH
- Chlorophyll metabolism MeSH
- Photochemical Processes * drug effects radiation effects MeSH
- Photosynthesis * drug effects radiation effects MeSH
- Photosystem II Protein Complex metabolism MeSH
- Stress, Physiological * drug effects MeSH
- Cadmium * toxicity pharmacology MeSH
- Oxidative Stress drug effects radiation effects MeSH
- Reactive Oxygen Species metabolism MeSH
- Light * MeSH
- Electron Transport drug effects MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll MeSH
- Photosystem II Protein Complex MeSH
- Cadmium * MeSH
- Reactive Oxygen Species MeSH
Sensing rice drought stress is crucial for agriculture, and chlorophyll a fluorescence (ChlF) is often used. However, existing techniques usually rely on defined feature points on the OJIP induction curve, which ignores the rich physiological information in the entire curve. Independent Component Analysis (ICA) can effectively preserve independent features, making it suitable for capturing drought-induced physiological changes. This study applies ICA and Support Vector Machine (SVM) to classify drought levels using the entire OJIP curve. The results show that the 20-dimensional ChlF features obtained by ICA provide superior classification performance, with Accuracy, Precision, Recall, F1-score, and Kappa coefficient improving by 18.15%, 0.18, 0.17, 0.17, and 0.22, respectively, compared to the entire curve. This work provides a rice drought stress levels determination method and highlights the importance of applying dimension reduction methods for ChlF analysis. This work is expected to enhance stress detection using ChlF.
- Keywords
- chlorophyll a fluorescence, dimension reduction, drought, rice,
- MeSH
- Principal Component Analysis MeSH
- Chlorophyll A * metabolism MeSH
- Chlorophyll * metabolism MeSH
- Fluorescence MeSH
- Stress, Physiological * MeSH
- Droughts * MeSH
- Oryza * physiology metabolism MeSH
- Support Vector Machine MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A * MeSH
- Chlorophyll * MeSH
To understand the role of Zn and Cd in anti-viral defence, Zn/Cd hyperaccumulator Noccaea caerulescens plants grown with deficient (0.3 µM), replete (10 µM) and excess (100 µM) Zn2+ and Cd (10 µM Zn2+ + 1 µM Cd2+) were infected with Turnip yellow mosaic virus (TYMV). Gas exchange and chlorophyll fluorescence kinetics analyses demonstrated direct TYMV effects on photosynthetic light reactions but N. caerulescens was more resistant against TYMV than the previously studied non-hyperaccumulator N. ochroleucum. Virus abundance and photosynthesis inhibition were the lowest in the high Zn and Cd treatments. RNAseq analysis of 10 µM Zn2+ plants revealed TYMV-induced upregulation of Ca transporters, chloroplastic ZTP29 and defence genes, but none of those that are known to be strongly involved in hyperaccumulation. Synchrotron µ-XRF tomography, however, showed that Zn hyperaccumulation remained strongest in vacuoles of epidermal storage cells regardless of infection. This was in contrast to N. ochroleucum, where apoplastic Zn drastically increased in response to TYMV. These results suggest that the antiviral response of N. caerulescens is less induced by the onset of this biotic stress, but it is rather a permanent resistant state of the plant. Real-time qPCR revealed upregulation of ferritin in Zn10 infected plants, suggesting Fe deprivation as a virus defence strategy under suboptimal Zn supply.
- Keywords
- Ferritin, MRNA sequencing, Micro-XRF, Noccaea caerulescens, OJIP, Turnip yellow mosaic virus, Zinc,
- MeSH
- Brassicaceae * genetics MeSH
- Cadmium MeSH
- Tymovirus * MeSH
- Zinc pharmacology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cadmium MeSH
- Zinc MeSH
The JIP test, based on fast chlorophyll fluorescence (ChlF) kinetics and derived parameters, is a dependable tool for studying photosynthetic efficiency under varying environmental conditions. We extracted additional information from the whole OJIP and the normalized variable fluorescence (Vt) transient curve using first and second-order derivatives to visualize and localize points of landmark events. To account for light-induced variations in the fluorescence transient, we present a time-adjusted JIP test approach in which the derivatives of the transient curve are used to determine the exact timing of the J and I steps instead of fixed time points. We compared the traditional JIP test method with the time-adjusted method in analyzing fast ChlF measurements of silver birch (Betula pendula) in field conditions studying diurnal and within-crown variation. The time-adjusted JIP test method showed potential for studying ChlF dynamics, as it takes into account potential time shifts in the occurrence of J and I steps. The exact occurrence times of J and I steps and other landmark events coincided with the times of significant differences in fluorescence intensity. Chlorophyll fluorescence parameters were linearly related to photosynthetic photon flux density (PPFD) at different times of day, and the values obtained by the time-adjusted JIP test showed a stronger linear regression than the traditional JIP test. For fluorescence parameters having significant differences among different times of day and crown layers, the time-adjusted JIP test resulted in more clear differences than the traditional JIP test. Diurnal ChlF intensity data indicated that differences between the southern and northern provenance were only evident under low light conditions. Taken together, our results emphasize the potential relevance of considering the time domain in the analysis of the fast ChlF induction.
- Keywords
- Betula pendula, Chlorophyll fluorescence, Diurnal variation, JIP test, Photosynthesis, Within-tree variation,
- MeSH
- Betula * MeSH
- Chlorophyll MeSH
- Fluorescence MeSH
- Photosynthesis MeSH
- Plant Leaves MeSH
- Trees * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll MeSH
Exogenously applied brassinosteroids (BRs) improve plant response to drought. However, many important aspects of this process, such as the potential differences caused by different developmental stages of analyzed organs at the beginning of drought, or by BR application before or during drought, remain still unexplored. The same applies for the response of different endogenous BRs belonging to the C27, C28-and C29- structural groups to drought and/or exogenous BRs. This study examines the physiological response of two different leaves (younger and older) of maize plants exposed to drought and treated with 24-epibrassinolide (epiBL), together with the contents of several C27, C28-and C29-BRs. Two timepoints of epiBL application (prior to and during drought) were utilized to ascertain how this could affect plant drought response and the contents of endogenous BRs. Marked differences in the contents of individual BRs between younger and older maize leaves were found: the younger leaves diverted their BR biosynthesis from C28-BRs to C29-BRs, probably at the very early biosynthetic steps, as the levels of C28-BR precursors were very low in these leaves, whereas C29-BR levels vere extremely high. Drought also apparently negatively affected contents of C28-BRs (particularly in the older leaves) and C29-BRs (particularly in the younger leaves) but not C27-BRs. The response of these two types of leaves to the combination of drought exposure and the application of exogenous epiBL differed in some aspects. The older leaves showed accelerated senescence under such conditions reflected in their reduced chlorophyll content and diminished efficiency of the primary photosynthetic processes. In contrast, the younger leaves of well-watered plants showed at first a reduction of proline levels in response to epiBL treatment, whereas in drought-stressed, epiBL pre-treated plants they were subsequently characterized by elevated amounts of proline. The contents of C29- and C27-BRs in plants treated with exogenous epiBL depended on the length of time between this treatment and the BR analysis regardless of plant water supply; they were more pronounced in plants subjected to the later epiBL treatment. The application of epiBL before or during drought did not result in any differences of plant response to this stressor.
- Keywords
- OJIP analysis, brassinosteroids, drought, endogenous content, exogenous application, leaf age, proline,
- Publication type
- Journal Article MeSH
Large amounts of antibiotics and microplastics are used in daily life and agricultural production, which affects not only plant growth but also potentially the food safety of vegetables and other plant products. Fast detection of the presence of antibiotics and microplastics in leafy vegetables is of great interest to the public. In this work, a method was developed to detect sulfadiazine and polystyrene, commonly used antibiotics and microplastics, in vegetables by measuring and modeling photosystem II chlorophyll a fluorescence (ChlF) emission from leaves. Chrysanthemum coronarium L., a common beverage and medicinal plant, was used to verify the developed method. Scanning electron microscopy, transmission electron microscopy, and liquid chromatograph-mass spectrometer analysis were used to show the presence of the two pollutants in the samples. The developed kinetic model could describe measured ChlF variations with an average relative error of 0.6%. The model parameters estimated for the chlorophyll a fluorescence induction kinetics curve (OJIP) induction can differentiate the two types of stresses while the commonly used ChlF OJIP induction characteristics cannot. This work provides a concept to detect antibiotic pollutants and microplastic pollutants in vegetables based on ChlF.
- Keywords
- OJIP transients, antibiotics, food security, microplastics, modeling, vegetable quality detection,
- Publication type
- Journal Article MeSH
The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement.
Magnetopriming has emerged as a promising seed-priming method, improving seed vigor, plant performance and productivity under both normal and stressed conditions. Various recent reports have demonstrated that improved photosynthesis can lead to higher biomass accumulation and overall crop yield. The major focus of the present review is magnetopriming-based, improved growth parameters, which ultimately favor increased photosynthetic performance. The plants originating from magnetoprimed seeds showed increased plant height, leaf area, fresh weight, thick midrib and minor veins. Similarly, chlorophyll and carotenoid contents, efficiency of PSII, quantum yield of electron transport, stomatal conductance, and activities of carbonic anhydrase (CA), Rubisco and PEP-carboxylase enzymes are enhanced with magnetopriming of the seeds. In addition, a higher fluorescence yield at the J-I-P phase in polyphasic chlorophyll a fluorescence (OJIP) transient curves was observed in plants originating from magnetoprimed seeds. Here, we have presented an overview of available studies supporting the magnetopriming-based improvement of various parameters determining the photosynthetic performance of crop plants, which consequently increases crop yield. Additionally, we suggest the need for more in-depth molecular analysis in the future to shed light upon hidden regulatory mechanisms involved in magnetopriming-based, improved photosynthetic performance.
- Keywords
- PSII efficiency, biomass, leaf growth, magnetopriming, photosynthetic enzymes, photosynthetic performance,
- MeSH
- Chlorophyll chemistry metabolism MeSH
- Fluorescence MeSH
- Photosynthesis * MeSH
- Plant Leaves metabolism MeSH
- Magnetic Fields * MeSH
- Plant Proteins metabolism MeSH
- Plants metabolism MeSH
- Seeds growth & development metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Chlorophyll MeSH
- Plant Proteins MeSH
Interspecific differences in sensitivity of the Antarctic moss Sanionia uncinata from King George Island (KGI) and James Ross Island (JRI) to photoinhibitory treatment were studied in laboratory conditions using chlorophyll fluorescence techniques. Slow (Kautsky) and fast (OJIP) kinetics were used for the measurements. Samples were exposed to a short-term (60 min) photoinhibitory treatment (PIT, 2000 μmol·m-2 ·s-1 PAR). The photoinhibitory treatment (PIT) led to photoinhibition which was indicated by the decrease in FV /FM and ΦPSII in KGI but not in JRI samples. However, this decrease was small and full recovery was reached 90 min after PIT termination. Non-photochemical quenching (NPQ) was activated during the PIT, and rapidly relaxed during recovery. Early stages of photoinhibition showed a drop in FV /FM and ΦPSII to minimum values within the first 10 s of the PIT, with their subsequent increase apparent within fast (0-5 min PIT) and slow (5-50 min PIT) phases of adjustment. The PIT caused a decrease in the performance index (Pi_Abs), photosynthetic electron transport per reaction centre (RC) (ET0 /RC). The PIT induced an increase in thermal dissipation per RC (DI0 /RC), effectivity of thermal dissipation (Phi_D0 ), absorption per RC (ABS/RC) and trapping rate per RC (TR0 /RC). In conclusion, PIT led to only slight photoinhibition followed by fast recovery in S. uncinata from KGI and JRI, since FV /FM and ΦPSII returned to pre-photoinhibitory conditions. Therefore, S. uncinata might be considered resistant to photoinhibition even in the wet state. The KGI samples showed higher resistance to photoinhibition than the JRI samples.
- Keywords
- Antarctica, chlorophyll fluorescence, moss, photoinhibitory treatment, spectral reflectance,
- MeSH
- Chlorophyll * MeSH
- Fluorescence MeSH
- Photosynthesis * MeSH
- Electron Transport MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll * MeSH