Cavalieri principle Dotaz Zobrazit nápovědu
Macroautophagy is often quantified by live imaging of autophagosomes labeled with fluorescently tagged ATG8 protein (FP-ATG8) in Arabidopsis thaliana. The labeled particles are then counted in single focal planes. This approach may lead to inaccurate results as the actual 3D distribution of autophagosomes is not taken into account and appropriate sampling in the Z-direction is not performed. To overcome this issue, we developed a workflow consisting of immunolabeling of autophagosomes with an anti-ATG8 antibody followed by stereological image analysis using the optical disector and the Cavalieri principle. Our protocol specifically recognized autophagosomes in epidermal cells of Arabidopsis root. Since the anti-ATG8 antibody recognizes multiple AtATG8 isoforms, we were able to detect a higher number of immunolabeled autophagosomes than with the FP-AtATG8e marker, that most probably does not recognize all autophagosomes in a cell. The number of autophagosomes per tissue volume positively correlated with the intensity of autophagy induction. Compared with the quantification of autophagosomes in maximum intensity projections, stereological methods were able to detect the autophagosomes present in a given volume with higher accuracy. Our novel workflow provides a powerful toolkit for unbiased and reproducible quantification of autophagosomes and offers a convenient alternative to the standard of live imaging with FP-ATG8 markers.
- Klíčová slova
- ATG8, Cavalieri principle, autophagosome, autophagy, image analysis, immunofluorescence, immunolabeling, microscopy, optical disector, stereology,
- MeSH
- Arabidopsis * metabolismus MeSH
- autofagie MeSH
- autofagozomy * metabolismus MeSH
- kořeny rostlin * metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- průběh práce MeSH
- rodina proteinů Atg8 metabolismus genetika MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny huseníčku MeSH
- rodina proteinů Atg8 MeSH
BACKGROUND: The implementation of different methods for estimating the surface area and volume of cells studied by confocal microscopy was developed. The methods were compared from the point of view of their precision, applicability and efficiency. METHODS: Interactive stereological methods (spatial grid method, fakir method, Cavalieri principle) as well as automatic digital methods (digital Crofton method, voxel counting, triangulation method, iso-intensity contouring method) were considered. The methods were tested on model geometrical solids and on real volume images consisting of a stack of serial sections encompassing entire tobacco BY-2 cells or cell chains. RESULTS: It is shown that many of the studied methods are very precise when applied to cells of simple or moderately complex shapes. The automatic digital methods are fast and precise but their applicability is limited by the necessity to segment automatically the object surface and to find an optimal resolution. This limitation is not present in stereological methods which are applied interactively and thus are more time-consuming. CONCLUSIONS: The presented implementations of the fakir method and the Cavalieri principle enable interactive, unbiased and efficient estimation of the cell surface area and volume. The recommended steps for measuring the surface area and/or volume of objects studied by confocal microscopy are described.
- MeSH
- buněčné linie MeSH
- jedovaté rostliny * MeSH
- konfokální mikroskopie metody MeSH
- listy rostlin cytologie MeSH
- obrazová cytometrie metody MeSH
- počítačové zpracování obrazu metody MeSH
- počítačové zpracování signálu MeSH
- tabák cytologie MeSH
- velikost buňky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- srovnávací studie MeSH
Although kidney trauma is a relatively common injury, its microscopic biomechanics are poorly understood. Experimental low-grade trauma in pig kidneys was studied using optical microscopy. We observed ruptures in the cortex as well as in the medulla. Both parts of the renal parenchyma were damaged, even in areas of the kidneys that were free of macroscopic cracks on the surface. To determine which constituents of the renal cortex and medulla, i.e. tubular parts of the nephron or the interstitial connective tissue, were less resistant to injury during the drop shatter test, we applied a simple stereological method to discriminate between random and tissue-specific rupture propagation. The ruptures propagated predominantly through the interstitial connective tissue of the renal cortex and medulla. The volume fraction of the tubules assessed by the Cavalieri principle was 90.4% within the renal cortex and 52.4% within the medulla. The most frequently affected blood vessels were the arcuate and interlobular veins, followed by the arcuate and interlobular arteries. No disruptions of the renal calyces were found.
- MeSH
- arteria renalis patologie MeSH
- dřeň ledvin krevní zásobení zranění patologie MeSH
- kůra ledviny krevní zásobení zranění patologie MeSH
- ledvinové kanálky zranění patologie MeSH
- ledviny zranění patologie MeSH
- nefrony patologie MeSH
- prasata MeSH
- renální oběh MeSH
- ruptura patologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Substitution of lost neurons by neurotransplantation would be a possible management of advanced degenerative cerebellar ataxias in which insufficient cerebellar reserve remains. In this study, we examined the volume and structure of solid embryonic cerebellar grafts in adult Lurcher mice, a model of olivocerebellar degeneration, and their healthy littermates. Grafts taken from enhanced green fluorescent protein (EGFP)-positive embryos were injected into the cerebellum of host mice. Two or six months later, the brains were examined histologically. The grafts were identified according to the EGFP fluorescence in frozen sections and their volumes were estimated using the Cavalieri principle. For gross histological evaluation, graft-containing slices were processed using Nissl and hematoxylin-eosin staining. Adjustment of the volume estimation approach suggested that it is reasonable to use all sections without sampling, but that calculation of values for up to 20% of lost section using linear interpolation does not constitute substantial error. Mean graft volume was smaller in Lurchers than in healthy mice when examined 6 months after the transplantation. We observed almost no signs of graft destruction. In some cases, compact grafts disorganized the structure of the host's cerebellar cortex. In Lurchers, the grafts had a limited contact with the host's cerebellum. Also, graft size was of greater variability in Lurchers than in healthy mice. The results are in compliance with our previous findings that Lurcher phenotype-associated factors have a negative effect on graft development. These factors can hypothetically include cerebellar morphology, local tissue milieu, or systemic factors such as immune system abnormalities.
- Klíčová slova
- Cerebellum, Lurcher mice, Neurotransplantation, Olivocerebellar degeneration,
- MeSH
- cerebelární ataxie patologie MeSH
- modely nemocí na zvířatech * MeSH
- mozeček * patologie MeSH
- myši transgenní * MeSH
- myši MeSH
- transplantace mozkové tkáně metody MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- enhanced green fluorescent protein MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH