Convolutional Neural Network Dotaz Zobrazit nápovědu
Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method's performance against expert annotations. The method was trained and tested on data obtained from St Anne's University Hospital (Brno, Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were 0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection compared to manual approaches.
- Klíčová slova
- Artifact probability matrix (APM), Convolutional neural networks (CNN), Intracranial EEG (iEEG), Noise detection,
- MeSH
- artefakty * MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- mozek fyziologie MeSH
- neuronové sítě * MeSH
- retrospektivní studie MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
PURPOSE: Necrosis quantification in the neoadjuvant setting using pathology slide review is the most important validated prognostic marker in conventional osteosarcoma. Herein, we explored three deep-learning strategies on histology samples to predict outcome for osteosarcoma in the neoadjuvant setting. EXPERIMENTAL DESIGN: Our study relies on a training cohort from New York University (NYU; New York, NY) and an external cohort from Charles University (Prague, Czechia). We trained and validated the performance of a supervised approach that integrates neural network predictions of necrosis/tumor content and compared predicted overall survival (OS) using Kaplan-Meier curves. Furthermore, we explored morphology-based supervised and self-supervised approaches to determine whether intrinsic histomorphologic features could serve as a potential marker for OS in the neoadjuvant setting. RESULTS: Excellent correlation between the trained network and pathologists was obtained for the quantification of necrosis content (R2 = 0.899; r = 0.949; P < 0.0001). OS prediction cutoffs were consistent between pathologists and the neural network (22% and 30% of necrosis, respectively). The morphology-based supervised approach predicted OS; P = 0.0028, HR = 2.43 (1.10-5.38). The self-supervised approach corroborated the findings with clusters enriched in necrosis, fibroblastic stroma, and osteoblastic morphology associating with better OS [log-2 hazard ratio (lg2 HR); -2.366; -1.164; -1.175; 95% confidence interval, (-2.996 to -0.514)]. Viable/partially viable tumor and fat necrosis were associated with worse OS [lg2 HR; 1.287; 0.822; 0.828; 95% confidence interval, (0.38-1.974)]. CONCLUSIONS: Neural networks can be used to automatically estimate the necrosis to tumor ratio, a quantitative metric predictive of survival. Furthermore, we identified alternate histomorphologic biomarkers specific to the necrotic and tumor regions, which could serve as predictors.
- MeSH
- deep learning * MeSH
- dospělí MeSH
- Kaplanův-Meierův odhad MeSH
- konvoluční neuronové sítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory kostí * mortalita patologie terapie MeSH
- nekróza patologie MeSH
- neoadjuvantní terapie MeSH
- neuronové sítě * MeSH
- osteosarkom * mortalita patologie terapie MeSH
- prognóza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Crop yield production could be enhanced for agricultural growth if various plant nutrition deficiencies, and diseases are identified and detected at early stages. Hence, continuous health monitoring of plant is very crucial for handling plant stress. The deep learning methods have proven its superior performances in the automated detection of plant diseases and nutrition deficiencies from visual symptoms in leaves. This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN), added upon a base convolutional neural network (CNN). Sometimes, a global feature descriptor might fail to capture the vital region of a diseased leaf, which causes inaccurate classification of disease. To address this issue, regional feature learning is crucial for a holistic feature aggregation. In this work, region-based feature summarization at multi-scales is explored using spatial pyramidal pooling for discriminative feature representation. Furthermore, a GCN is developed to capacitate learning of finer details for classifying plant diseases and insufficiency of nutrients. The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), has been evaluated on two public datasets for nutrition deficiency, and two for disease classification using four backbone CNNs. The best classification performances of the proposed PND-Net are as follows: (a) 90.00% Banana and 90.54% Coffee nutrition deficiency; and (b) 96.18% Potato diseases and 84.30% on PlantDoc datasets using Xception backbone. Furthermore, additional experiments have been carried out for generalization, and the proposed method has achieved state-of-the-art performances on two public datasets, namely the Breast Cancer Histopathology Image Classification (BreakHis 40 × : 95.50%, and BreakHis 100 × : 96.79% accuracy) and Single cells in Pap smear images for cervical cancer classification (SIPaKMeD: 99.18% accuracy). Also, the proposed method has been evaluated using five-fold cross validation and achieved improved performances on these datasets. Clearly, the proposed PND-Net effectively boosts the performances of automated health analysis of various plants in real and intricate field environments, implying PND-Net's aptness for agricultural growth as well as human cancer classification.
- Klíčová slova
- Agriculture, Cancer classification, Convolutional neural network, Graph convolutional network, Nutrition deficiency, Plant disease, Spatial pyramid pooling,
- MeSH
- deep learning * MeSH
- lidé MeSH
- listy rostlin MeSH
- nemoci rostlin * MeSH
- neuronové sítě * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Liver volumetry is an important tool in clinical practice. The calculation of liver volume is primarily based on Computed Tomography. Unfortunately, automatic segmentation algorithms based on handcrafted features tend to leak segmented objects into surrounding tissues like the heart or the spleen. Currently, convolutional neural networks are widely used in various applications of computer vision including image segmentation, while providing very promising results. In our work, we utilize robustly segmentable structures like the spine, body surface, and sagittal plane. They are used as key points for position estimation inside the body. The signed distance fields derived from these structures are calculated and used as an additional channel on the input of our convolutional neural network, to be more specific U-Net, which is widely used in medical image segmentation tasks. Our work shows that this additional position information improves the results of the segmentation. We test our approach in two experiments on two public datasets of Computed Tomography images. To evaluate the results, we use the Accuracy, the Hausdorff distance, and the Dice coefficient. Code is publicly available at: https://gitlab.com/hachaf/liver-segmentation.git.
- Klíčová slova
- convolutional neural network, liver volumetry, machine learning, medical imaging, position features, semantic segmentation,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVES: Cardiovascular diseases are critical diseases and need to be diagnosed as early as possible. There is a lack of medical professionals in remote areas to diagnose these diseases. Artificial intelligence-based automatic diagnostic tools can help to diagnose cardiac diseases. This work presents an automatic classification method using machine learning to diagnose multiple cardiac diseases from phonocardiogram signals. METHODS: The proposed system involves a convolutional neural network (CNN) model because of its high accuracy and robustness to automatically diagnose the cardiac disorders from the heart sounds. To improve the accuracy in a noisy environment and make the method robust, the proposed method has used data augmentation techniques for training and multi-classification of multiple cardiac diseases. RESULTS: The model has been validated both heart sound data and augmented data using n-fold cross-validation. Results of all fold have been shown reported in this work. The model has achieved accuracy on the test set up to 98.60% to diagnose multiple cardiac diseases. CONCLUSIONS: The proposed model can be ported to any computing devices like computers, single board computing processors, android handheld devices etc. To make a stand-alone diagnostic tool that may be of help in remote primary health care centres. The proposed method is non-invasive, efficient, robust, and has low time complexity making it suitable for real-time applications.
- Klíčová slova
- Cardiac signals, Data augmentation, Deep neural networks, Multi-label classification, Phonocardiogram,
- MeSH
- lidé MeSH
- nemoci srdce * diagnostické zobrazování MeSH
- neuronové sítě MeSH
- srdeční ozvy * MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The recent big data revolution in Genomics, coupled with the emergence of Deep Learning as a set of powerful machine learning methods, has shifted the standard practices of machine learning for Genomics. Even though Deep Learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are becoming widespread in Genomics, developing and training such models is outside the ability of most researchers in the field. RESULTS: Here we present ENNGene-Easy Neural Network model building tool for Genomics. This tool simplifies training of custom CNN or hybrid CNN-RNN models on genomic data via an easy-to-use Graphical User Interface. ENNGene allows multiple input branches, including sequence, evolutionary conservation, and secondary structure, and performs all the necessary preprocessing steps, allowing simple input such as genomic coordinates. The network architecture is selected and fully customized by the user, from the number and types of the layers to each layer's precise set-up. ENNGene then deals with all steps of training and evaluation of the model, exporting valuable metrics such as multi-class ROC and precision-recall curve plots or TensorBoard log files. To facilitate interpretation of the predicted results, we deploy Integrated Gradients, providing the user with a graphical representation of an attribution level of each input position. To showcase the usage of ENNGene, we train multiple models on the RBP24 dataset, quickly reaching the state of the art while improving the performance on more than half of the proteins by including the evolutionary conservation score and tuning the network per protein. CONCLUSIONS: As the role of DL in big data analysis in the near future is indisputable, it is important to make it available for a broader range of researchers. We believe that an easy-to-use tool such as ENNGene can allow Genomics researchers without a background in Computational Sciences to harness the power of DL to gain better insights into and extract important information from the large amounts of data available in the field.
Any place the human species inhabits is inevitably modified by them. One of the first features that appear everywhere, in urban areas as well as in the countryside or deep forests, are roads. Further, roads and streets in general reflect their omnipresent and significant role in our lives through the flow of goods, people, and even culture and information. However, their contribution to the public is highly influenced by their surface. Yet, research on automated road surface classification from remotely sensed data is peculiarly scarce. This work investigates the capacities of chosen convolutional neural networks (fully convolutional network (FCN), U-Net, SegNet, DeepLabv3+) on this task. We find that convolutional neural network (CNN) are capable of distinguishing between compact (asphalt, concrete) and modular (paving stones, tiles) surfaces for both roads and sidewalks on aerial data of spatial resolution of 10 cm. U-Net proved its position as the best-performing model among the tested ones, reaching an overall accuracy of nearly 92%. Furthermore, we explore the influence of adding a near-infrared band to the basic red green blue (RGB) scenes and stress where it should be used and where avoided. Overfitting strategies such as dropout and data augmentation undergo the same examination and clearly show their pros and cons. Convolutional neural networks are also compared to single-pixel based random forests and show indisputable advantage of the context awareness in convolutional neural networks, U-Net reaching almost 25% higher accuracy than random forests. We conclude that convolutional neural networks and U-Net in particular should be considered as suitable approaches for automated semantic segmentation of road surfaces on aerial imagery, while common overfitting strategies should only be used under particular conditions.
- Klíčová slova
- CNN, Convolutional neural network, Land cover detection, Remote sensing, Road surface,
- Publikační typ
- časopisecké články MeSH
This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
- Klíčová slova
- CT analysis, Computer aided detection, Convolutional neural network, Spinal metastasis,
- MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory páteře diagnostické zobrazování sekundární MeSH
- neuronové sítě * MeSH
- počítačová rentgenová tomografie * MeSH
- rentgenový obraz - interpretace počítačová metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This work outlines an approach for localizing anomalies in nuclear reactor cores during their steady state operation, employing deep, one-dimensional, convolutional neural networks. Anomalies are characterized by the application of perturbation diagnostic techniques, based on the analysis of the so-called "neutron-noise" signals: that is, fluctuations of the neutron flux around the mean value observed in a steady-state power level. The proposed methodology is comprised of three steps: initially, certain reactor core perturbations scenarios are simulated in software, creating the respective perturbation datasets, which are specific to a given reactor geometry; then, the said datasets are used to train deep learning models that learn to identify and locate the given perturbations within the nuclear reactor core; lastly, the models are tested on actual plant measurements. The overall methodology is validated on hexagonal, pre-Konvoi, pressurized water, and VVER-1000 type nuclear reactors. The simulated data are generated by the FEMFFUSION code, which is extended in order to deal with the hexagonal geometry in the time and frequency domains. The examined perturbations are absorbers of variable strength, and the trained models are tested on actual plant data acquired by the in-core detectors of the Temelín VVER-1000 Power Plant in the Czech Republic. The whole approach is realized in the framework of Euratom's CORTEX project.
- Klíčová slova
- FEMFFUSION, VVER-1000, absorber of variable strength, convolutional neural networks, deep learning, neutron diffusion, neutron noise, perturbation localization, pressurized water reactor,
- MeSH
- atomové reaktory MeSH
- neuronové sítě * MeSH
- neutrony MeSH
- software MeSH
- voda * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- voda * MeSH
Laser-induced breakdown spectroscopy (LIBS) is a well-established industrial tool with emerging relevance in high-stakes applications. To achieve its required analytical performance, LIBS is often coupled with advanced pattern-recognition algorithms, including machine learning models. Namely, artificial neural networks (ANNs) have recently become a frequently applied part of LIBS practitioners' toolkit. Nevertheless, ANNs are generally applied in spectroscopy as black-box models, without a real insight into their predictions. Here, we apply various post-hoc interpretation techniques with the aim of understanding the decision-making of convolutional neural networks. Namely, we find synthetic spectra that yield perfect expected classification predictions and denote these spectra class-specific prototype spectra. We investigate the simplest possible convolutional neural network (consisting of a single convolutional and fully connected layers) trained to classify the extended calibration dataset collected for the ChemCam laser-induced breakdown spectroscopy instrument of the Curiosity Mars rover. The trained convolutional neural network predominantly learned meaningful spectroscopic features which correspond to the elements comprising the major oxides found in the calibration targets. In addition, the discrete convolution operation with the learnt filters results in a crude baseline correction.
- Klíčová slova
- ChemCam calibration dataset, Classification, Convolutional neural networks, Interpretable machine learning, Laser-induced breakdown spectroscopy,
- Publikační typ
- časopisecké články MeSH