Experimental determination of spinal segment kinematics
Dotaz
Zobrazit nápovědu
BACKGROUND: The aim of the experiment was to compare the mechanical properties of intact spinal segment with impaired intervertebral disc and impaired intervertebral disc fixed by TSLP (Thoracolumbar Spine Locking Plate). METHODS AND RESULTS: Spinal specimens were taken from domestic swine. A total of 8 test mechanical states (intact, impaired and fixed) were modeled and the mechanical properties, expressed by the value of moment of couple necessary to twist the specimen at tensile force F = 200 N and the value of moments necessary for extension straining, were determined. The study was based on in vitro biomechanical testing of the TSLP plate used to stabilize the front thoracolumbar column of spinal segments taken from a pig. The plate was used for monosegmental fixation. The disc was cut by scalpel to simulate the Type A injury to front spinal column. In each state (intact, impaired or fixed), specimens were subjected to a tension load of prescribed force and, then, twisted by a given angle. Subsequently, extension load of intact, impaired and impaired & fixed segment was measured. Statistical evaluation verified the hypothesis of the different behavior of intact, impaired and fixed specimens - both for tension & torsion load and extension load. The analyses did not indicate different mechanical behavior of intact and fixed specimens. In other words, monosegmental fixation of both impaired and intact specimens by TSLP Synthes implant will lead to similar mechanical behavior of these specimens. Further, we found that intact and fixed specimens show non-symmetric behavior at positive and negative twisting angles. This was not observed for impaired specimens. CONCLUSION: Several stabilization systems were developed to stabilize the front thoracolumbar spinal column. Surgery of the anterior column of injured spine should restore the correct position of the spine, ensure decompression of vertebral canal when neural structures are compressed, and stabilize the spine to allow immediate loading and mobilization of the patient. The aim of this study was to compare mechanical properties of intact spinal segment, impaired spinal segment and impaired spinal segment stabilized by TSLP Synthes implant. The problems were solved by experimental modeling using a testing machine that simulated loads for several mechanical states of the spinal segment. Favorable mechanical properties of TSLP Synthes fixator were demonstrated. The experimental results will be used for subsequent computational modeling of the spinal segment in all experimentally solved states.
- MeSH
- bederní obratle chirurgie MeSH
- biomechanika MeSH
- hrudní obratle chirurgie MeSH
- kostní destičky * MeSH
- meziobratlová ploténka * MeSH
- nemoci páteře patofyziologie chirurgie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
During pregnancy, an array of changes occurs in women body to enable the growth and development of the future baby and the consequent delivery. These changes are reflected in the range of motion of trunk, pelvis, lower limbs and other body segments, affect the locomotion and some of these changes may persist to the postpartum period. The aim of this study was to describe the changes affecting the gait during pregnancy and to determine the effect of tested footwear on kinematic gait characteristics during pregnancy as previous studies indicate that special orthopaedic insoles and footwear might be useful in prevention of the common musculoskeletal pain and discomfort related to pregnancy. Participants from the control group (n = 18), without any intervention, and the experimental group (n = 23), which was wearing the tested shoes, were measured at their 14, 28 and 37 gestational weeks and 28 weeks postpartum to capture the complete pregnancy-related changes in gait. The gait 3D kinematic data were obtained using Simi Motion System. The differences between the control and experimental group at the first data collection session in most of the analysed variables, as well as relatively high standard deviations of analysed variables indicate large individual differences in the gait pattern. The effect of tested footwear on kinematic gait pattern changes may be explained by its preventive effect against the foot arches falling. In the control group, changes associated previously with the foot arches falling and hindfoot hyperpronation were observed during advanced phases of pregnancy and postpartum, e.g. increase in knee flexion or increase in spinal curvature. For the comprehensive evaluation of the tested footwear on pregnancy gait pattern, future studies combining the kinematic and dynamic plantographic methods are needed.
- MeSH
- biomechanika MeSH
- chůze (způsob) fyziologie MeSH
- design vybavení metody MeSH
- dospělí MeSH
- gestační stáří MeSH
- komplikace těhotenství prevence a kontrola MeSH
- lidé MeSH
- muskuloskeletální bolest prevence a kontrola MeSH
- ortézy nohy (od hlezna dolů) MeSH
- poporodní období fyziologie MeSH
- studie případů a kontrol MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH