Tick-borne encephalitis virus (TBEV) is a neurotropic orthoflavivirus that invades the central nervous system, leading to severe neurological manifestations. In this study, we developed a reporter virus comprising TurboGFP-expressing TBEV (tGFP-TBEV) as a versatile tool for advancing TBEV research. The tGFP-TBEV facilitates quantitative measurement of viral replication, enables precise tracking of individual infected cells, and supports high-throughput screening of potential antiviral compounds and virus-neutralization assays. Furthermore, tGFP-TBEV proved effective as a model for studying TBEV infection in rat organotypic cerebellar slices cultured ex vivo and for visualizing TBEV infection in the mouse brain. Using tissue-clearing protocols and light-sheet fluorescence microscopy, we achieved high-resolution, three-dimensional mapping of the TBEV distribution in the mouse brain. This analysis uncovered distinct patterns of TBEV tropism, with infections concentrated in regions associated with neurogenesis, olfactory processing, and specific neuroanatomical pathways. The ability to visualize infection at both the cellular and whole-organ level provides a new tool for detailed investigations into viral tropism, replication, and interactions with host tissues, paving the way for deeper insights into TBEV biology and the pathogenesis of tick-borne encephalitis.
- Keywords
- TBEV, light-sheet microscopy, neurotropism, organotypic cerebellar slices, reporter viruses, tissue clearing,
- MeSH
- Encephalitis, Tick-Borne * virology MeSH
- Rats MeSH
- Humans MeSH
- Luminescent Proteins genetics metabolism MeSH
- Brain * virology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Virus Replication MeSH
- Genes, Reporter MeSH
- Viral Tropism MeSH
- Encephalitis Viruses, Tick-Borne * genetics physiology MeSH
- Imaging, Three-Dimensional MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Luminescent Proteins MeSH
This study is a theoretical investigation of amides derived from hardwickiic acid (HA) as potential inhibitors of human acetyl- and butyryl-cholinesterase (hAChE and hBChE) and as drug candidates against Alzheimer's Disease (AD). Twelve compounds were prepared and geometrically optimized using GaussView 5.0.8 and the DFT method with the B3LYP/6-31G basis set to visualize molecular electrostatic potential (MEP) maps and frontier orbitals (HOMO and LUMO). In addition, pharmacokinetic and toxicological properties were studied using the online servers PreADMET and SwissADME. Molecular docking was performed against crystal structures of hAChE and hBChE prepared with the biopolymer module in SYBYL-X 2.0, previously validated. The results revealed similar profiles in surface maps and molecular orbitals for the amide substituent group. Pharmacokinetic predictions demonstrated that all 12 HA amide derivatives showed significant values for blood-brain barrier (BBB) penetration, classifying them as active in the central nervous system (CNS), a crucial pathway for AD treatment. Intermolecular interactions between the compounds and targets suggest that the benzyl amide derivative I had the highest affinity toward the hAChE binding site (-10.1 kcal/mol), while the hydroxy amide derivative L showed the highest affinity for the hBChE binding site (-9.7 kcal/mol). These findings can inform future enzymatic assays of HA amide derivatives against AChE and BChE.
- Keywords
- Acetylcholinesterase, Amides, Butyrylcholinesterase, Hardwickiic acid, Pharmacokinetic and toxicological properties,
- MeSH
- Acetylcholinesterase metabolism chemistry MeSH
- Amides * chemistry metabolism pharmacokinetics pharmacology MeSH
- Butyrylcholinesterase metabolism chemistry MeSH
- Cholinesterase Inhibitors * chemistry metabolism pharmacokinetics pharmacology MeSH
- Blood-Brain Barrier metabolism MeSH
- Humans MeSH
- Molecular Docking Simulation * MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Amides * MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors * MeSH
BACKGROUND: Recent studies have demonstrated that prolonged sperm storage adversely affects offspring through epigenetics, yet its broader effects on other molecular levels such as transcription and proteomics in progeny have been rarely explored. RESULTS: We employed comprehensive multi-omics approaches to uncover storage-induced epigenetic changes in sperm and their effects on embryonic development and offspring health. Sperm from common carp (Cyprinus carpio) was stored in vitro in artificial seminal plasma for 14 days, and the impacts of storage on functional properties of sperm and progeny development were investigated. We combined DNA methylome, transcriptomic and proteomic data to elucidate the potential mechanisms by which sperm storage influences progeny development. Prolonged in vitro storage significantly reduced sperm motility and fertilising ability which coincided with changes in the DNA methylation pattern. Integrated analyses of the offspring DNA methylome, comparative transcriptomics and cardiac performance measurements revealed storage-induced alterations of genes associated with nervous system development, myocardial morphogenesis and cellular responses to stimuli. Proteomic analyses showed that in addition to visual perception and nervous system function, pathways of the immunity system were also enriched. Results provide strong evidence of the epigenetic inheritance of the offspring's performances when short-term stored sperm was used for fertilisation. CONCLUSIONS: Short-term sperm storage induces heritable molecular and phenotypic changes in offspring, raising concerns over the potential intergenerational consequences of assisted reproductive practices in aquaculture and possibly other vertebrates.
- Keywords
- Epigenetic inheritance, Epigenetics, Fish sperm, Offspring development, Sperm ageing,
- MeSH
- Embryonic Development * MeSH
- Epigenesis, Genetic MeSH
- Carps * genetics physiology embryology MeSH
- DNA Methylation MeSH
- Multiomics MeSH
- Proteomics MeSH
- Spermatozoa * physiology metabolism MeSH
- Transcriptome MeSH
- Semen Preservation * adverse effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BAF (SWI/SNF) chromatin remodelers engage binding partners to generate site-specific DNA accessibility. However, the basis for interaction between BAF and divergent binding partners has remained unclear. Here, we tested the hypothesis that scaffold proteins augment BAF's binding repertoire by examining β-catenin (CTNNB1) and steroidogenic factor 1 (SF-1, NR5A1), a transcription factor central to steroid production in human cells. BAF inhibition rapidly opposed SF-1/β-catenin enhancer occupancy, impairing SF-1 target activation and SF-1/β-catenin autoregulation. These effects arise due to β-catenin's role as a molecular adapter between SF-1 and an intrinsically disordered region (IDR) of the canonical BAF (cBAF) subunit ARID1A. In contrast to exclusively IDR-driven mechanisms, adapter function is mediated by direct association of ARID1A with β-catenin's folded Armadillo repeats. β-catenin similarly linked cBAF to YAP1, SOX2, FOXO3, and CBP/p300, reflecting a general IDR-mediated mechanism for modular coordination between factors. Molecular visualization highlights β-catenin's adapter role for interaction of cBAF with binding partners.
- Keywords
- IDRs, adrenocortical carcinoma, chromatin remodeling, co-activators, scaffold proteins, steroid hormones, transcription factors, transcription regulators, unstructured protein,
- MeSH
- Adaptor Proteins, Signal Transducing metabolism genetics MeSH
- beta Catenin * metabolism genetics chemistry MeSH
- DNA-Binding Proteins * metabolism genetics chemistry MeSH
- Phosphoproteins metabolism genetics MeSH
- HEK293 Cells MeSH
- Nuclear Proteins * metabolism genetics MeSH
- Humans MeSH
- Forkhead Box Protein O3 metabolism genetics MeSH
- YAP-Signaling Proteins MeSH
- Signal Transduction MeSH
- Steroidogenic Factor 1 * metabolism genetics MeSH
- p300-CBP Transcription Factors metabolism genetics MeSH
- Transcription Factors * metabolism genetics chemistry MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Intrinsically Disordered Proteins * metabolism genetics MeSH
- Enhancer Elements, Genetic MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adaptor Proteins, Signal Transducing MeSH
- ARID1A protein, human MeSH Browser
- beta Catenin * MeSH
- CTNNB1 protein, human MeSH Browser
- DNA-Binding Proteins * MeSH
- Phosphoproteins MeSH
- Nuclear Proteins * MeSH
- NR5A1 protein, human MeSH Browser
- Forkhead Box Protein O3 MeSH
- YAP-Signaling Proteins MeSH
- Steroidogenic Factor 1 * MeSH
- p300-CBP Transcription Factors MeSH
- Transcription Factors * MeSH
- Intrinsically Disordered Proteins * MeSH
- YAP1 protein, human MeSH Browser
The dorsal and ventral visual streams have been considered to play distinct roles in visual processing for action: the dorsal stream is assumed to support real-time actions, while the ventral stream facilitates memory-guided actions. However, recent evidence suggests a more integrated function of these streams. We investigated the neural dynamics and functional connectivity between them during memory-guided actions using intracranial EEG. We tracked neural activity in the inferior parietal lobule in the dorsal stream, and the ventral temporal cortex in the ventral stream as well as the hippocampus during a delayed action task involving object identity and location memory. We found increased alpha power in both streams during the delay, indicating their role in maintaining spatial visual information. In addition, we recorded increased alpha power in the hippocampus during the delay, but only when both object identity and location needed to be remembered. We also recorded an increase in theta band phase synchronization between the inferior parietal lobule and ventral temporal cortex and between the inferior parietal lobule and hippocampus during the encoding and delay. Granger causality analysis indicated dynamic and frequency-specific directional interactions among the inferior parietal lobule, ventral temporal cortex, and hippocampus that varied across task phases. Our study provides unique electrophysiological evidence for close interactions between dorsal and ventral streams, supporting an integrated processing model in which both streams contribute to memory-guided actions.
- Keywords
- Alpha oscillations, Dorsal visual stream, Granger causality analysis, Intracranial EEG, Memory-guided actions, Phase-locking value, Theta oscillations, Ventral visual stream,
- MeSH
- Adult MeSH
- Electroencephalography MeSH
- Electrocorticography MeSH
- Hippocampus * physiology MeSH
- Humans MeSH
- Young Adult MeSH
- Memory * physiology MeSH
- Temporal Lobe * physiology MeSH
- Parietal Lobe * physiology MeSH
- Visual Perception * physiology MeSH
- Visual Pathways * physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The visual cycle is an important pathway in the retinal pigment epithelium (RPE) which regenerates 11-cis retinal chromophore for the retinal photoreceptors. The central enzyme in the visual cycle is RPE65 retinol isomerase. Expression of RPE65 mRNA and protein levels are significantly lower in RPE cell culture models when compared to native RPE. This limits the use of these models to study the visual cycle. To determine the main drivers of RPE65 regulation we compared the transcriptional profiles of native and cell culture models of RPE with various levels of RPE65 expression. We also compared the levels of RPE65 expression between ARPE-19 cells grown in media supplemented with 1 mM pyruvate (PYR) or 10 mM nicotinamide (NAM). In addition, we performed experiments directed at transcriptional and translational regulation of RPE65. We show that RPE65 mRNA and protein expression is significantly higher in NAM media grown cells than PYR cells. Transfection of cells with a variety of different vectors containing RPE65 ORFs with different promoters, codon optimization, IRES, 3' UTRs, suggest that translational effects are less important than transcriptional status. Importantly, we found that feeding with rod outer segments (ROS) decreases RPE65 expression in NAM grown cells, suggesting that certain primary functions of the RPE (here, visual cycle and phagocytosis) are not positively linked. Analysis of differentially regulated microRNAs (miRs) provides a basis for this downregulation. It appears that the regulation of RPE65 expression in ARPE-19 cells, in particular, is multifactorial, involving primarily metabolic and transcriptional status of the cells, with translation of RPE65 mRNA playing a smaller role.
- Keywords
- MicroRNAs, Nicotinamide, Pyruvate, RPE65, Retina, Retinal pigment epithelium, Ribosome, Transcription, Translation,
- MeSH
- Cell Line MeSH
- cis-trans-Isomerases * genetics metabolism MeSH
- Humans MeSH
- RNA, Messenger genetics metabolism MeSH
- Gene Expression Regulation * MeSH
- Retinal Pigment Epithelium * metabolism cytology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- cis-trans-Isomerases * MeSH
- RNA, Messenger MeSH
- retinoid isomerohydrolase MeSH Browser
The human 8-oxoguanine DNA glycosylase 1 (hOGG1) is a bifunctional DNA repair enzyme that possesses both glycosylase and AP-lyase activity. Its AP-lyase reaction mechanism had been revealed by crystallographic capturing of the intermediate adduct. However, no intermediate within the glycosylase reaction was reported to date and the relevant reaction mechanism thus remained unresolved. In this work, we studied the glycosylase reaction of hOGG1 by time-resolved crystallography and spectroscopic/enzymological analyses. To trigger the glycosylase reaction within a crystal, we created a pH-responsive mutant of hOGG1 in which lysine 249 (K249) has been replaced by histidine (H), and designated hOGG1(K249H). Using hOGG1(K249H), a reactive intermediate state of the hOGG1(K249H)-DNA complex was captured in crystal upon pH activation. An unprecedented, ribose-ring-opened hemiaminal structure at the 8-oxoguanine (oxoG) site was found. Based on the structure of the reaction intermediate and QM/MM (quantum mechanics/molecular mechanics) calculations, a glycosylase reaction pathway of hOGG1(K249H) was identified where the aspartic acid 268 (D268) acts as a proton donor to O4' of oxoG. Moreover, enzymologically derived pKa (4.5) of a catalytic residue indicated that the observed pKa can be attributed to the carboxy group of D268. Thus, a reaction mechanism of the glycosylase reaction by hOGG1(K249H) has been proposed.
Human 8-oxoguanine DNA glycosylase 1 (hOGG1) is a key DNA repair enzyme that excises 8-oxoguanine, a mutagenic base lesion, from double-stranded DNA. In this study, we crystallographically visualized an intermediate state of the enzymatic reaction. To achieve this, we employed a specifically designed pH-sensitive mutant of hOGG1 and applied a freeze-trapping technique to capture the reaction intermediate. The resulting crystal structure revealed a previously unknown reaction pathway involving a hemiaminal-type intermediate, captured here for the first time. These findings provide new insights into the catalytic mechanism of hOGG1.
- MeSH
- DNA Glycosylases * chemistry genetics metabolism MeSH
- DNA chemistry metabolism MeSH
- Guanine analogs & derivatives chemistry metabolism MeSH
- Hydrogen-Ion Concentration MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Mutation MeSH
- DNA Repair * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 8-hydroxyguanine MeSH Browser
- DNA Glycosylases * MeSH
- DNA MeSH
- Guanine MeSH
- oxoguanine glycosylase 1, human MeSH Browser
The field of Neurochemistry spent decades trying to understand how the brain works, from nano to macroscale and across diverse species. Technological advancements over the years allowed researchers to better visualize and understand the cellular processes underpinning central nervous system (CNS) function. This review provides an overview of how novel models, and tools have allowed Neurochemistry researchers to investigate new and exciting research questions. We discuss the merits and demerits of different in vivo models (e.g., Caenorhabditis elegans, Drosophila melanogaster, Ratus norvegicus, and Mus musculus) as well as in vitro models (e.g., primary cells, induced pluripotent stem cells, and immortalized cells) to study Neurochemical events. We also discuss how these models can be paired with cutting-edge genetic manipulation (e.g., CRISPR-Cas9 and engineered viral vectors) and imaging techniques, such as super-resolution microscopy and new biosensors, to study cellular processes of the CNS. These technological advancements provide new insight into Neurochemical events in physiological and pathological contexts, paving the way for the development of new treatments (e.g., cell and gene therapies or small molecules) that aim to treat neurological disorders by reverting the CNS to its homeostatic state.
- Keywords
- C. elegans, Drosophila, biosensors, gene therapy, iPSCs, super‐resolution microscopy,
- MeSH
- Humans MeSH
- Brain * metabolism MeSH
- Neurochemistry * methods trends MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: This study investigates the role of the SLC38A8 gene. SLC38A8 facilitates glutamine influx, which converts to glutamate in the visual pathway. Mutations in SLC38A8 are associated with FHONDA syndrome, a subtype of foveal hypoplasia with congenital nystagmus and optic-nerve-decussation defects without pigmentation leading to severe vision loss. METHODS: In vivo and in vitro methods were conducted using retinal cell lines overexpressing SLC38A8, and Slc38a8/Slc38a7 gene-edited mice to evaluate visual function and physiological changes. Statistical analyses included two-way ANOVA, multiple regression, and ANCOVA. RESULTS: In vitro, SLC38A8 overexpression influenced retinal gene expression, light detection, and visual perception, as well as glutamine and glutamate dynamics. In Y79SNAT8-OE cells, glutamate levels were significantly higher under light conditions compared to dark conditions at 12 h (3.4 ± 0.16 nmol/μl vs. 3.9 ± 0.17 nmol/μl, p = 0.0011) and 17 h (3.6 ± 0.22 nmol/μl vs. 4.5 ± 0.24 nmol/μl, p = 0.0001), a pattern not observed in control cells. SLC38A8 expression also increased significantly (RQ = 2.1 ± 0.11, p < 0.05) in Y79 cells under glutamine deprivation. In vivo, Slc38a8-truncated gene mice exhibited altered testicular morphology, with significantly reduced volume (70.9 ± 5.1 mm3 vs. 85.5 ± 6.7 mm3, p = 0.023), and reduced length (4.8 ± 0.2 mm vs. 5.4 ± 0.4 mm, p = 0.0169), alongside degenerative changes in germinal epithelium, and elevated liver enzyme. Despite normal eye morphology, retinal thickness, and visual evoked potentials, electroretinogram and behavioural tests indicated enhanced scotopic responsiveness with significant increases in a-wave (162.98 ± 14.1 μv vs. 133.9 ± 36.9 μv, p = 1.5e-07) and b-wave amplitudes (274.82 ± 25.2 μv vs. 199.9 ± 56.1 μv, p = 3.02e-09). CONCLUSIONS: Our findings underscore SLC38A8 role in retinal function and glutamine-glutamate metabolism, with clinical implications for FHONDA and potential future dietary intervention targeting glutamine or glutamate.
- Keywords
- SLC38A8, FHONDA syndrome, glutamine‐glutamate cycle, phototransduction, retinal function,
- MeSH
- Electroretinography MeSH
- Glutamine metabolism MeSH
- Glutamic Acid metabolism MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Retinal Diseases * genetics metabolism physiopathology MeSH
- Gene Expression Regulation * physiology MeSH
- Retina * metabolism MeSH
- Amino Acid Transport System y+ * genetics MeSH
- Visual Pathways * metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glutamine MeSH
- Glutamic Acid MeSH
- Amino Acid Transport System y+ * MeSH
PURPOSE: Analyze phenotypic data from knockout mice with late-adult retinal pathologic phenotypes to identify genes associated with development of adult-onset retinal diseases. METHODS: The International Mouse Phenotyping Consortium (IMPC) database was queried for genes associated with abnormal retinal phenotypes in the late-adult knockout mouse pipeline (49-80 weeks postnatal age). We identified human orthologs and performed protein-protein analysis and biological pathways analysis with known inherited retinal disease (IRD) and age-related macular degeneration (AMD) genes using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), PLatform for Analysis of single cell Eye in a Disk (PLAE), Protein Analysis Through Evolutionary Relationships (PANTHER), and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS: Screening of 587 late-adult mouse genes yielded 12 with abnormal retinal phenotypes, which corresponded to 20 human orthologs. Three of the 12 mouse genes and two of the 20 human orthologs were previously implicated in retinal pathology or physiology in a literature review. Although all of the genes demonstrated retinal pathology when deleted from the mouse genome, most do not have established roles in human retinal disease. Furthermore, human protein-protein analysis and biological pathway analysis yielded only a few relationships between the candidate gene list and that of known IRD and AMD genes, suggesting they may represent novel retinal functions. CONCLUSIONS: We identified 12 mouse genes with significant late-adult abnormal retinal pathology, eight of which have not been previously implicated in either mouse or human retinal physiology or pathology. These serve as novel retinal disease gene candidates for late-onset retinal disease.
- MeSH
- Phenotype MeSH
- Humans MeSH
- Macular Degeneration * genetics MeSH
- Disease Models, Animal MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Eye Proteins * genetics MeSH
- Retina * pathology metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Eye Proteins * MeSH