Web browser Dotaz Zobrazit nápovědu
BACKGROUND: Simulators used in teaching are interactive applications comprising a mathematical model of the system under study and a graphical user interface (GUI) that allows the user to control the model inputs and visualize the model results in an intuitive and educational way. Well-designed simulators promote active learning, enhance problem-solving skills, and encourage collaboration and small group discussion. However, creating simulators for teaching purposes is a challenging process that requires many contributors including educators, modelers, graphic designers, and programmers. The availability of a toolchain of user-friendly software tools for building simulators can facilitate this complex task. OBJECTIVE: This paper aimed to describe an open-source software toolchain termed Bodylight.js that facilitates the creation of browser-based client-side simulators for teaching purposes, which are platform independent, do not require any installation, and can work offline. The toolchain interconnects state-of-the-art modeling tools with current Web technologies and is designed to be resilient to future changes in the software ecosystem. METHODS: We used several open-source Web technologies, namely, WebAssembly and JavaScript, combined with the power of the Modelica modeling language and deployed them on the internet with interactive animations built using Adobe Animate. RESULTS: Models are implemented in the Modelica language using either OpenModelica or Dassault Systèmes Dymola and exported to a standardized Functional Mock-up Unit (FMU) to ensure future compatibility. The C code from the FMU is further compiled to WebAssembly using Emscripten. Industry-standard Adobe Animate is used to create interactive animations. A new tool called Bodylight.js Composer was developed for the toolchain that enables one to create the final simulator by composing the GUI using animations, plots, and control elements in a drag-and-drop style and binding them to the model variables. The resulting simulators are stand-alone HyperText Markup Language files including JavaScript and WebAssembly. Several simulators for physiology education were created using the Bodylight.js toolchain and have been received with general acclaim by teachers and students alike, thus validating our approach. The Nephron, Circulation, and Pressure-Volume Loop simulators are presented in this paper. Bodylight.js is licensed under General Public License 3.0 and is free for anyone to use. CONCLUSIONS: Bodylight.js enables us to effectively develop teaching simulators. Armed with this technology, we intend to focus on the development of new simulators and interactive textbooks for medical education. Bodylight.js usage is not limited to developing simulators for medical education and can facilitate the development of simulators for teaching complex topics in a variety of different fields.
- Klíčová slova
- Web browser, Web technologies, computer simulation, education, modeling, physiology,
- MeSH
- internet MeSH
- lidé MeSH
- software normy MeSH
- studium lékařství metody MeSH
- uživatelské rozhraní počítače * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The repertoire of T- and B-cell receptor sequences encodes the antigen specificity of adaptive immunity system, determines its present state and guides its ability to mount effective response against encountered antigens in future. High throughput sequencing of immune repertoires (Rep-Seq) is a promising technique that allows to profile millions of antigen receptors of an individual in a single experiment. While a substantial number of tools for mapping and assembling Rep-Seq data were published recently, the field still lacks an intuitive and flexible tool that can be used by researchers with little or no computational background for in-depth analysis of immune repertoire profiles. RESULTS: Here we report VDJviz, a web tool that can be used to browse, analyze and perform quality control of Rep-Seq results generated by various pre-processing software. On a set of real data examples we show that VDJviz can be used to explore key repertoire characteristics such as spectratype, repertoire clonality, V-(D)-J recombination patterns and to identify shared clonotypes. We also demonstrate the utility of VDJviz in detection of critical Rep-Seq biases such as artificial repertoire diversity and cross-sample contamination. CONCLUSIONS: VDJviz is a versatile and lightweight tool that can be easily employed by biologists, immunologists and immunogeneticists for routine analysis and quality control of Rep-Seq data. The software is freely available for non-commercial purposes, and can be downloaded from: https://github.com/antigenomics/vdjviz .
- Klíčová slova
- B-cell, Browser, High-throughput sequencing, Immunology, Repertoire sequencing, T-cell,
- MeSH
- B-lymfocyty imunologie metabolismus MeSH
- genomika metody normy MeSH
- hypervariabilní oblasti genetika MeSH
- internetový prohlížeč MeSH
- klonální evoluce genetika MeSH
- lidé MeSH
- shluková analýza MeSH
- software * MeSH
- T-lymfocyty imunologie metabolismus MeSH
- V(D)J rekombinace * MeSH
- výpočetní biologie metody normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hypervariabilní oblasti MeSH
Biomacromolecular structural data make up a vital and crucial scientific resource that has grown not only in terms of its amount but also in its size and complexity. Furthermore, these data are accompanied by large and increasing amounts of experimental data. Additionally, the macromolecular data are enriched with value-added annotations describing their biological, physicochemical and structural properties. Today, the scientific community requires fast and fully interactive web visualization to exploit this complex structural information. This article provides a survey of the available cutting-edge web services that address this challenge. Specifically, it focuses on data-delivery problems, discusses the visualization of a single structure, including experimental data and annotations, and concludes with a focus on the results of molecular-dynamics simulations and the visualization of structural ensembles.
- Klíčová slova
- browser-based, data delivery, macromolecules, visualization, web-based,
- MeSH
- internet * MeSH
- makromolekulární látky chemie MeSH
- počítačová grafika * MeSH
- software * MeSH
- uživatelské rozhraní počítače * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- makromolekulární látky MeSH
- MeSH
- datové soubory jako téma * MeSH
- elektronová kryomikroskopie MeSH
- internet MeSH
- internetový prohlížeč * MeSH
- lidé MeSH
- ligandy MeSH
- makromolekulární látky chemie MeSH
- molekulární modely * MeSH
- uživatelské rozhraní počítače MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- makromolekulární látky MeSH
HotSpot Wizard is a web server for automatic identification of 'hot spots' for engineering of substrate specificity, activity or enantioselectivity of enzymes and for annotation of protein structures. The web server implements the protein engineering protocol, which targets evolutionarily variable amino acid positions located in the active site or lining the access tunnels. The 'hot spots' for mutagenesis are selected through the integration of structural, functional and evolutionary information obtained from: (i) the databases RCSB PDB, UniProt, PDBSWS, Catalytic Site Atlas and nr NCBI and (ii) the tools CASTp, CAVER, BLAST, CD-HIT, MUSCLE and Rate4Site. The protein structure and e-mail address are the only obligatory inputs for the calculation. In the output, HotSpot Wizard lists annotated residues ordered by estimated mutability. The results of the analysis are mapped on the enzyme structure and visualized in the web browser using Jmol. The HotSpot Wizard server should be useful for protein engineers interested in exploring the structure of their favourite protein and for the design of mutations in site-directed mutagenesis and focused directed evolution experiments. HotSpot Wizard is available at http://loschmidt.chemi.muni.cz/hotspotwizard/.
- MeSH
- beta-laktamasy chemie MeSH
- glykosidhydrolasy chemie MeSH
- hydrolasy triesterů kyseliny fosforečné chemie MeSH
- hydrolasy chemie MeSH
- internet MeSH
- proteinové inženýrství * MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- uživatelské rozhraní počítače MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-laktamasy MeSH
- glykosidhydrolasy MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy triesterů kyseliny fosforečné MeSH
- hydrolasy MeSH
- licheninase MeSH Prohlížeč
Charcot-Marie-Tooth disease (CMT) is an umbrella term for inherited neuropathies affecting an estimated one in 2,500 people. Over 120 CMT and related genes have been identified and clinical gene panels often contain more than 100 genes. Such a large genomic space will invariantly yield variants of uncertain clinical significance (VUS) in nearly any person tested. This rise in number of VUS creates major challenges for genetic counseling. Additionally, fewer individual variants in known genes are being published as the academic merit is decreasing, and most testing now happens in clinical laboratories, which typically do not correlate their variants with clinical phenotypes. For CMT, we aim to encourage and facilitate the global capture of variant data to gain a large collection of alleles in CMT genes, ideally in conjunction with phenotypic information. The Inherited Neuropathy Variant Browser provides user-friendly open access to currently reported variation in CMT genes. Geneticists, physicians, and genetic counselors can enter variants detected by clinical tests or in research studies in addition to genetic variation gathered from published literature, which are then submitted to ClinVar biannually. Active participation of the broader CMT community will provide an advance over existing resources for interpretation of CMT genetic variation.
- Klíčová slova
- VUS, database, inherited neuropathy, variants of unknown significance,
- MeSH
- alely MeSH
- charakteristiky bydlení * MeSH
- Charcotova-Marieova-Toothova nemoc genetika MeSH
- genetická variace * MeSH
- internet * MeSH
- lidé MeSH
- uživatelské rozhraní počítače MeSH
- vyhledávač MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
R-loops are common non-B nucleic acid structures formed by a three-stranded nucleic acid composed of an RNA-DNA hybrid and a displaced single-stranded DNA (ssDNA) loop. Because the aberrant R-loop formation leads to increased mutagenesis, hyper-recombination, rearrangements, and transcription-replication collisions, it is regarded as important in human diseases. Therefore, its prevalence and distribution in genomes are studied intensively. However, in silico tools for R-loop prediction are limited, and therefore, we have developed the R-loop tracker tool, which was implemented as a part of the DNA Analyser web server. This new tool is focused upon (1) prediction of R-loops in genomic DNA without length and sequence limitations; (2) integration of R-loop tracker results with other tools for nucleic acids analyses, including Genome Browser; (3) internal cross-evaluation of in silico results with experimental data, where available; (4) easy export and correlation analyses with other genome features and markers; and (5) enhanced visualization outputs. Our new R-loop tracker tool is freely accessible on the web pages of DNA Analyser tools, and its implementation on the web-based server allows effective analyses not only for DNA segments but also for full chromosomes and genomes.
- Klíčová slova
- RNA–DNA hybrid, non-B structure, sequence analysis,
- MeSH
- algoritmy * MeSH
- DNA chemie genetika MeSH
- genomika metody MeSH
- internet statistika a číselné údaje MeSH
- lidé MeSH
- nestabilita genomu * MeSH
- R-smyčka * MeSH
- software MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
BioDat is a software tool that simplifies routine recording, storing and analyzing technical and biological 1D signals. The basic features of the BioDat software are: database format based on PhysioNet, a shared database of signals running in network environment accessible for users with permissions, importing and/or exporting data from and/or to different formats (d-file, EDF, ASCII, Matlab), accessing the database through HTTP(S) and ordinary web browsers. The application is written in Java and runs both standalone and as installation-free Java applet.
- MeSH
- databáze faktografické * MeSH
- internet * MeSH
- počítačová grafika MeSH
- počítačové zpracování signálu * MeSH
- software * MeSH
- systémy řízení databází * MeSH
- ukládání a vyhledávání informací metody MeSH
- uživatelské rozhraní počítače * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
LiteMol suite is an innovative solution that enables near-instant delivery of model and experimental biomacromolecular structural data, providing users with an interactive and responsive experience in all modern web browsers and mobile devices. LiteMol suite is a combination of data delivery services (CoordinateServer and DensityServer), compression format (BinaryCIF), and a molecular viewer (LiteMol Viewer). The LiteMol suite is integrated into Protein Data Bank in Europe (PDBe) and other life science web applications (e.g., UniProt, Ensemble, SIB, and CNRS services), it is freely available at https://litemol.org , and its source code is available via GitHub. LiteMol suite provides advanced functionality (annotations and their visualization, powerful selection features), and this chapter will describe their use for visual inspection of protein structures.
- Klíčová slova
- Atom selection, Electron density, Ligand representation, Protein visualization, Validation report,
- MeSH
- databáze proteinů MeSH
- internet MeSH
- internetový prohlížeč MeSH
- konformace proteinů * MeSH
- proteiny chemie MeSH
- software MeSH
- uživatelské rozhraní počítače MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- proteiny MeSH
Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.
- MeSH
- databáze proteinů * MeSH
- internet MeSH
- konformace proteinů MeSH
- lektiny chemie MeSH
- makromolekulární látky chemie MeSH
- molekulární konformace * MeSH
- molekulární modely MeSH
- software * MeSH
- vazebná místa MeSH
- zinkové prsty MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- LecB protein, Pseudomonas aeruginosa MeSH Prohlížeč
- lektiny MeSH
- makromolekulární látky MeSH