agricultural intensification Dotaz Zobrazit nápovědu
With rising demand for biomass, cropland expansion and intensification represent the main strategies to boost agricultural production, but are also major drivers of biodiversity decline. We investigate the consequences of attaining equal global production gains by 2030, either by cropland expansion or intensification, and analyse their impacts on agricultural markets and biodiversity. We find that both scenarios lead to lower crop prices across the world, even in regions where production decreases. Cropland expansion mostly affects biodiversity hotspots in Central and South America, while cropland intensification threatens biodiversity especially in Sub-Saharan Africa, India and China. Our results suggest that production gains will occur at the costs of biodiversity predominantly in developing tropical regions, while Europe and North America benefit from lower world market prices without putting their own biodiversity at risk. By identifying hotspots of potential future conflicts, we demonstrate where conservation prioritization is needed to balance agricultural production with conservation goals.
Human-induced environmental impacts on wildlife are widespread, causing major biodiversity losses. One major threat is agricultural intensification, typically characterised by large areas of monoculture, mechanical tillage, and the use of agrochemicals. Intensification leads to the fragmentation and loss of natural habitats, native vegetation, and nesting and breeding sites. Understanding the adaptability of insects to these changing environmental conditions is critical to predicting their survival. Bumblebees, key pollinators of wild and cultivated plants, are used as model species to assess insect adaptation to anthropogenic stressors. We investigated the effects of agricultural pressures on two common European bumblebees, Bombus pascuorum and B. lapidarius. Restriction-site Associated DNA Sequencing was used to identify loci under selective pressure across agricultural-natural gradients over 97 locations in Europe. 191 unique loci in B. pascuorum and 260 in B. lapidarius were identified as under selective pressure, and associated with agricultural stressors. Further investigation suggested several candidate proteins including several neurodevelopment, muscle, and detoxification proteins, but these have yet to be validated. These results provide insights into agriculture as a stressor for bumblebees, and signal for conservation action in light of ongoing anthropogenic changes.
- Klíčová slova
- Anthropocene, Bombus, RADseq, agricultural intensification, bee decline, global change, population genomics,
- Publikační typ
- časopisecké články MeSH
Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
- Klíčová slova
- agricultural management schemes, arthropod diversity, biodiversity, evenness, functional groups, landscape complexity, meta-analysis, organic farming, plant diversity,
- MeSH
- biodiverzita * MeSH
- členovci * MeSH
- ekosystém * MeSH
- zemědělství metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
The intensification of agricultural practices and urbanisation are widespread causes of biodiversity loss. However, the role of artificial habitats in genetic rescue is an aspect that is not well understood. Implementing genetic rescue measures to improve gene flow and maintain a viable population of keystone species is a crucial prerequisite for promoting diverse and resilient ecosystems. Landscape fragmentation and modern agricultural methods have caused the decline and the isolation of the remnant colonies of the endangered European ground squirrel (Spermophilus citellus) throughout its range. However, the artificial habitat, such as airport fields with regular grass mowing, provides suitable conditions for this grassland specialist. We measured home range size and genetic variation of seven souslik colonies in western Slovakia. Based on the 6904 ddRAD SNPs, we found significantly higher individual heterozygosity in colonies on airports compared to colonies on pastures. This indicates a potential for higher fitness of individuals from airport colonies, which can serve as a source for evidence-based translocations. Such an intervention can preserve the genetic diversity of small and isolated populations in the region. We emphasize that conservation management strategies would be strengthened including a specific focus on human-made grassland habitats.
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- genetická variace * MeSH
- jednonukleotidový polymorfismus MeSH
- letiště * MeSH
- ohrožené druhy MeSH
- Sciuridae genetika MeSH
- tok genů MeSH
- zachování přírodních zdrojů metody MeSH
- zemědělství * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Slovenská republika MeSH
Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island size, indicating that the creation of quite small but diversified (e.g., differing in vegetation cover) non-crop habitat islands could be the most efficient tool for the maintenance and enhancement of diversity of ground-dwelling carabids and spiders in agricultural landscapes.
- MeSH
- biodiverzita * MeSH
- brouci * MeSH
- ekosystém * MeSH
- ostrovy * MeSH
- pavouci * MeSH
- zemědělství * MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- ostrovy * MeSH
Evidence of declines in insect populations has recently received considerable scientific and societal attention. However, the lack of long-term insect monitoring makes it difficult to assess whether declines are geographically widespread. By contrast, bird populations are well monitored and often used as indicators of environmental change. We compared the population trends of European insectivorous birds with those of other birds to assess whether patterns in bird population trends were consistent with declines of insects. We further examined whether declines were evident for insectivores with different habitats, foraging strata, and other ecological preferences. Bird population trends were estimated for Europe (1990-2015) and Denmark (1990-2016). On average, insectivores declined over the study period (13% across Europe and 28% in Denmark), whereas omnivores had stable populations. Seedeaters also declined (28% across Europe; 34% in Denmark), but this assessment was based on fewer species than for other groups. The effects of insectivory were stronger for farmland species (especially grassland species), for ground feeders, and for cold-adapted species. Insectivory was associated with long-distance migration, which was also linked to population declines. However, many insectivores had stable populations, especially habitat generalists. Our findings suggest that the decline of insectivores is primarily associated with agricultural intensification and loss of grassland habitat. The loss of both seed and insect specialists indicates an overall trend toward bird communities dominated by diet generalists.
Declinaciones a Largo Plazo de Poblaciones de Aves Insectívoras en Europa y las Causas Probables Resumen La evidencia de las declinaciones poblacionales de insectos ha recibido recientemente una atención considerable por parte de la comunidad científica y la sociedad. Sin embargo, la falta de un monitoreo prolongado de los insectos complica valorar si estas declinaciones tienen una distribución extensa geográficamente. Como contraste, las poblaciones de aves tienen un monitoreo constante y con frecuencia se usan como indicadores del cambio climático. Comparamos las tendencias poblacionales de las aves insectívoras de Europa con las de otras aves para valorar si los patrones en las tendencias poblacionales de aves son consistentes con las declinaciones de insectos. Además examinamos si las declinaciones eran evidentes para aves insectívoras con diferentes hábitats, estratos de alimentación, y otras preferencias ecológicas. Las tendencias poblacionales de las aves se estimaron para Europa (1990 - 2015) y para Dinamarca (1990 - 2016). En promedio, las aves insectívoras declinaron a lo largo del periodo de estudio (13% en Europa y 28% en Dinamarca) mientras que las aves omnívoras tuvieron poblaciones estables. Las poblaciones de aves que se alimentan de semillas también declinaron (28% en Europa; 34% en Dinamarca), pero esta valoración se basó en menos especies que para los otros grupos. Los efectos de la insectivoría fueron más evidentes para las especies de tierras agrícolas (especialmente las especies de pastizales), para las especies que se alimentan sobre el suelo y para las especies adaptadas al frío. La insectivoría estuvo asociada con la migración de larga distancia, la cual también estuvo ligada a las declinaciones poblacionales. Sin embargo, muchas aves insectívoras tuvieron poblaciones estables, especialmente aquellas generalistas de hábitat. Nuestros hallazgos sugieren que la declinación de las aves insectívoras está asociada principalmente con la intensificación agrícola y la pérdida de pastizales. La pérdida de aves cuya alimentación es especialista en insectos o en semillas indica una tendencia general hacia comunidades de aves dominadas por aquellas con dietas generalistas.
- Klíčová slova
- agricultural intensification, bioindicadores, bioindicators, cambio climático, climate change, declinaciones de insectos, insect declines, intensificación agrícola, population trends, tendencias poblacionales,
- MeSH
- ekosystém MeSH
- populační dynamika MeSH
- ptáci * MeSH
- zachování přírodních zdrojů * MeSH
- zemědělství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.
- Klíčová slova
- agriculture policy, biological invasions, environmental weed, invasive species, sustainable intensification,
- MeSH
- býložravci MeSH
- chov zvířat * trendy MeSH
- chování snižující riziko MeSH
- druhová specificita MeSH
- hospodářská zvířata MeSH
- kontrola plevele ekonomika zákonodárství a právo metody MeSH
- krmivo pro zvířata ekonomika zásobování a distribuce MeSH
- plevel * MeSH
- veřejná politika MeSH
- vládní programy organizace a řízení MeSH
- vládní regulace * MeSH
- zachování přírodních zdrojů MeSH
- zásobování potravinami MeSH
- zavlečené druhy * ekonomika zákonodárství a právo MeSH
- zemědělské plodiny * MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Declines in European bird populations are reported for decades but the direct effect of major anthropogenic pressures on such declines remains unquantified. Causal relationships between pressures and bird population responses are difficult to identify as pressures interact at different spatial scales and responses vary among species. Here, we uncover direct relationships between population time-series of 170 common bird species, monitored at more than 20,000 sites in 28 European countries, over 37 y, and four widespread anthropogenic pressures: agricultural intensification, change in forest cover, urbanisation and temperature change over the last decades. We quantify the influence of each pressure on population time-series and its importance relative to other pressures, and we identify traits of most affected species. We find that agricultural intensification, in particular pesticides and fertiliser use, is the main pressure for most bird population declines, especially for invertebrate feeders. Responses to changes in forest cover, urbanisation and temperature are more species-specific. Specifically, forest cover is associated with a positive effect and growing urbanisation with a negative effect on population dynamics, while temperature change has an effect on the dynamics of a large number of bird populations, the magnitude and direction of which depend on species' thermal preferences. Our results not only confirm the pervasive and strong effects of anthropogenic pressures on common breeding birds, but quantify the relative strength of these effects stressing the urgent need for transformative changes in the way of inhabiting the world in European countries, if bird populations shall have a chance of recovering.
- Klíčová slova
- agriculture intensification, anthropogenic pressures, bird conservation, large-scale analysis,
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- farmy MeSH
- lesy * MeSH
- populační dynamika MeSH
- ptáci fyziologie MeSH
- zachování přírodních zdrojů MeSH
- zemědělství * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
The objective of the study was analysis of the occurrence and intensity of menopausal symptoms in postmenopausal women from Poland, Belarus, Ukraine, Czech Republic, Slovakia and Poland. The study was conducted during the period 2014-2015 among postmenopausal women living in the areas of Poland, Belarus, Ukraine, Czech Republic and Slovakia. The degree of menopausal complaints was assessed using the Kupperman Menopausal Index and Greene Climacteric Scale. The respondents were additionally asked about age, educational level, place of residence, marital status and age at last menstrual period. Into the study were enrolled women aged 50-65, minimum 2 years after the last menstrual period, who had a generally good state of health and did not use hormone replacement therapy. The results were subjected to statistical analysis. The intensity of all menopausal symptoms measured by the Kupperman Menopausal Index and Greene Climacteric Scale was similar in Poland, Czech Republic and Slovakia. In these countries, severe, moderate and mild menopausal symptoms measured by Kupperman Menopausal Index occurred with a similar frequency. Similar results were also obtained in the subscales of psychological, somatic and vasomotor symptoms according to the Greene Climacteric Scale. Nearly a half of the women from Belarus did not report symptoms measured by Kupperman Menopausal Index. They obtained significantly lower menopausal complaints in the subscales of psychological and somatic symptoms according to the Greene Climacteric Scale, compared to the inhabitants of the remaining countries. The majority of women from the Ukraine had mild menopausal symptoms as measured by the Kupperman Menopausal Index. They had significantly more severe complaints in the subscales of psychological, somatic and vasomotor symptoms according to the Greene Climacteric Scale, compared to the inhabitants of the remaining countries in the study. The intensity of menopausal symptoms in women from Ukraine and Belarus was related with educational level, place of residence, and marital status, whereas in women from Poland, Czech Republic and Slovakia, only with marital status.
- MeSH
- lidé středního věku MeSH
- lidé MeSH
- menopauza * MeSH
- senioři MeSH
- socioekonomické faktory * MeSH
- zeměpis MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- východní Evropa MeSH