BACKGROUND: Alternative organism designs (i.e. the existence of distinct combinations of traits leading to the same function or performance) are a widespread phenomenon in nature and are considered an important mechanism driving the evolution and maintenance of species trait diversity. However, alternative designs are rarely considered when investigating assembly rules and species effects on ecosystem functioning, assuming that single trait trade-offs linearly affect species fitness and niche differentiation. SCOPE: Here, we first review the concept of alternative designs, and the empirical evidence in plants indicating the importance of the complex effects of multiple traits on fitness. We then discuss how the potential decoupling of single traits from performance and function of species can compromise our ability to detect the mechanisms responsible for species coexistence and the effects of species on ecosystems. Placing traits in the continuum of organism integration level (i.e. traits hierarchically structured ranging from organ-level traits to whole-organism traits) can help in choosing traits more directly related to performance and function. CONCLUSIONS: We conclude that alternative designs have important implications for the resulting trait patterning expected from different assembly processes. For instance, when only single trade-offs are considered, environmental filtering is expected to result in decreased functional diversity. Alternatively, it may result in increased functional diversity as an outcome of alternative strategies providing different solutions to local conditions and thus supporting coexistence. Additionally, alternative designs can result in higher stability of ecosystem functioning as species filtering due to environmental changes would not result in directional changes in (effect) trait values. Assessing the combined effects of multiple plant traits and their implications for plant functioning and functions will improve our mechanistic inferences about the functional significance of community trait patterning.
- Keywords
- Biodiversity–ecosystem functioning, ecological filters, ecophysiology, functional diversity, functional ecology, many-to-one mapping, species coexistence,
- MeSH
- Biodiversity MeSH
- Ecosystem * MeSH
- Phenotype MeSH
- Plant Physiological Phenomena MeSH
- Plants * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity-stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.
- Keywords
- biotic homogenization, grassland experiment, landscape, scale, spatial asynchrony, β diversity, γ diversity, γ stability,
- MeSH
- Biodiversity * MeSH
- Ecosystem * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Anthropogenic activities increase pesticide contamination and biological invasions in freshwater ecosystems. Understanding their combined effects on community structure and on ecosystem functioning presents challenges for an improved ecological risk assessment. This study focuses on an artificial stream mesocosms experiment testing for direct and indirect effects of insecticide (chlorantraniliprole - CAP) exposure on the structure of a benthic macroinvertebrate freshwater community and on ecosystem functioning (leaf decomposition, primary production). To understand how predator identity and resource quality alter the community responses to chemical stress, the mediating effects of an invasive predator species (crayfish Procambarus clarkii) and detritus quality (tested by using leaves of the invasive Eucalyptus globulus) on insecticide toxicity were also investigated. Low concentrations of CAP reduced the abundance of shredders and grazers, decreasing leaf decomposition and increasing primary production. Replacement of autochthonous predators and leaf litter by invasive species decreased macroinvertebrate survival, reduced leaf decomposition, and enhanced primary production. Structural equation modeling (SEM) highlighted that CAP toxicity to macroinvertebrates was mediated by the presence of crayfish or eucalypt leaf litter which are now common in many Mediterranean freshwaters. In summary, our results demonstrate that the presence of these two invasive species alters the effects of insecticide exposure on benthic freshwater communities. The approach used here also allowed for a mechanistic evaluation of indirect effects of these stressors and of their interaction on ecosystem functional endpoint, emphasizing the value of incorporating biotic stressors in ecotoxicological experiments.
- MeSH
- Ecosystem * MeSH
- Insecticides * MeSH
- Plant Leaves MeSH
- Rivers MeSH
- Fresh Water MeSH
- Introduced Species MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insecticides * MeSH
The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.
- Keywords
- belowground ecology, ecosystem properties and processes, environmental gradients, plant functions, root traits, spatial and temporal scales, trait causal relationships, trait covariation,
- MeSH
- Atmosphere MeSH
- Ecology MeSH
- Ecosystem * MeSH
- Phenotype MeSH
- Plants * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Freshwater ecosystems are increasingly impacted by pharmaceutical contaminants (PhACs) and climate change-induced warming. Yet, their joint effects on freshwater taxa remain unclear. This is partly due to poorly understood mechanisms linking the effects on (sub)individual scales to higher levels of ecological organisation. We investigated the responses of two aquatic arthropods, Asellus aquaticus and Cloeon dipterum, to environmentally realistic levels of a 15-PhAC mixture (total concentration: 2.9 µg/L) and warming (+4 °C above ambient) in outdoor pond mesocosms (1000 L) across winter and summer. We measured physiological traits (bioenergetic responses based on quantification of energy consumption and energy stored in proteins, sugars and lipids, and oxidative damage based on malondialdehyde [MDA] levels), population density and ecosystem functions (leaf litter decomposition and insect emergence). In winter, PhACs reduced energy availability and increased MDA levels. In contrast, PhACs increased energy availability and decreased MDA levels in summer. The stressors reduced Asellus abundance, leading to reduced leaf litter decomposition, while Cloeon emergence in summer declined due to a PhAC-induced decline in larval abundance. Warming alone consistently decreased arthropod abundances and emergence, except for Asellus abundance in winter. The stressor effects through changes in bioenergetics were stronger than their direct effects on population abundances and ecosystem functions. Our findings highlight the vulnerability of aquatic arthropods to PhAC pollution and warming, emphasising the need for effective management strategies to mitigate the effects of emerging contaminants and climate change on freshwater biota.
- Keywords
- Asellus, Climate change, Cloeon, Ecological impacts, Energy budget, Freshwater invertebrates, Oxidative stress, Xenobiotics,
- MeSH
- Water Pollutants, Chemical * toxicity MeSH
- Arthropods * drug effects MeSH
- Ecosystem * MeSH
- Energy Metabolism drug effects MeSH
- Climate Change MeSH
- Seasons MeSH
- Fresh Water MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Water Pollutants, Chemical * MeSH
Fungi are crucial for terrestrial ecosystems, yet the role of fungal diversity in ecosystem functions remains unclear. We synthesize fungal biodiversity and ecosystem function (BEF) relationships, focusing on plant biomass production, carbon storage, decomposition, and pathogen or parasite resistance. The observed BEF relationships for these ecosystem functions vary in strength and direction, complicating generalizations. Strong positive relationships are generally observed when multiple ecosystem functions are addressed simultaneously. Often, fungal community composition outperforms species richness in predicting ecosystem functions. For more comprehensive fungal BEF research, we recommend studying natural communities, considering the simultaneous functions of a broader array of fungal guilds across spatiotemporal scales, and integrating community assembly concepts into BEF research. For this, we propose a conceptual framework and testable hypotheses.
- Keywords
- biodiversity, ecosystem function, fungal diversity, multifunctionality,
- MeSH
- Biodiversity * MeSH
- Biomass MeSH
- Ecosystem * MeSH
- Fungi * physiology MeSH
- Plants microbiology MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity-ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals.
- Keywords
- biodiversity, biodiversity–ecosystem function relationships, ecosystem function, ecosystem services, modeling, sustainability, trait-based modeling,
- Publication type
- Journal Article MeSH
- Review MeSH
Under global change, how biological diversity and ecosystem services are maintained in time is a fundamental question. Ecologists have long argued about multiple mechanisms by which local biodiversity might control the temporal stability of ecosystem properties. Accumulating theories and empirical evidence suggest that, together with different population and community parameters, these mechanisms largely operate through differences in functional traits among organisms. We review potential trait-stability mechanisms together with underlying tests and associated metrics. We identify various trait-based components, each accounting for different stability mechanisms, that contribute to buffering, or propagating, the effect of environmental fluctuations on ecosystem functioning. This comprehensive picture, obtained by combining different puzzle pieces of trait-stability effects, will guide future empirical and modeling investigations.
While biodiversity is expected to enhance multiple ecosystem functions (EFs), the different roles of multiple biodiversity dimensions remain difficult to disentangle without carefully designed experiments. We sowed plant communities with independent levels of functional (FD) and phylogenetic diversities (PD), combined with different levels of fertilization, to investigate their direct and indirect roles on multiple EFs, including plant-related EFs (plant biomass productivity, litter decomposability), soil fertility (organic carbon and nutrient pool variables), soil microbial activity (respiration and nutrient cycling), and an overall multifunctionality. We expected an increase in most EFs in communities with higher values of FD and/or PD via complementarity effects, but also the dominant plant types (using community weighted mean, CWM, independent of FD and PD) via selection effects on several EFs. The results showed strong direct effects of different dimensions of plant functional structure parameters on plant-related EFs, through either CWM or FD, with weak effects of PD. Fertilization had significant effects on one soil microbial activity and indirect effects on the other variables via changes in soil abiotic properties. Dominant plant types and FD showed only indirect effects on soil microbial activity, through litter decomposition and soil abiotic properties, highlighting the importance of cascading effects. This study shows the relevance of complementary dimensions of biodiversity for assessing both direct and cascading effects on multiple EFs.
- Keywords
- biodiversity effect, ecosystem functioning, functional diversity, litter decomposition, multifunctionality, phylogenetic diversity, plant-soil interaction, soil abiotic properties,
- MeSH
- Biodiversity MeSH
- Ecosystem * MeSH
- Phylogeny MeSH
- Soil * chemistry MeSH
- Soil Microbiology MeSH
- Plants MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil * MeSH
Keeping natural ecosystems and their functions in the proper condition is necessary. One of the best contactless monitoring methods is remote sensing, especially optical remote sensing, which is used for vegetation applications. In addition to satellite data, data from ground sensors are necessary for validation or training in ecosystem-function quantification. This article focuses on the ecosystem functions associated with aboveground-biomass production and storage. The study contains an overview of the remote-sensing methods used for ecosystem-function monitoring, especially methods for detecting primary variables linked to ecosystem functions. The related studies are summarized in multiple tables. Most studies use freely available Sentinel-2 or Landsat imagery, with Sentinel-2 mostly producing better results at larger scales and in areas with vegetation. The spatial resolution is a key factor that plays a significant role in the accuracy with which ecosystem functions are quantified. However, factors such as spectral bands, algorithm selection, and validation data are also important. In general, optical data are usable even without supplementary data.
- Keywords
- ecosystem function, ecosystem service, optical sensors, remote sensing,
- Publication type
- Journal Article MeSH
- Review MeSH