human rDNA Dotaz Zobrazit nápovědu
In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.
- Klíčová slova
- copy number, human rDNA, mutations, sequence variability,
- MeSH
- genetická variace * MeSH
- genetické lokusy MeSH
- lidé MeSH
- promotorové oblasti (genetika) genetika MeSH
- ribozomální DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ribozomální DNA MeSH
In human cells, each rDNA unit consists of the ~13 kb long ribosomal part and ~30 kb long intergenic spacer (IGS). The ribosomal part, transcribed by RNA polymerase I (pol I), includes genes coding for 18S, 5.8S, and 28S RNAs of the ribosomal particles, as well as their four transcribed spacers. Being highly repetitive, intensively transcribed, and abundantly methylated, rDNA is a very fragile site of the genome, with high risk of instability leading to cancer. Multiple small mutations, considerable expansion or contraction of the rDNA locus, and abnormally enhanced pol I transcription are usual symptoms of transformation. Recently it was found that both IGS and the ribosomal part of the locus contain many functional/potentially functional regions producing non-coding RNAs, which participate in the pol I activity regulation, stress reactions, and development of the malignant phenotype. Thus, there are solid reasons to believe that rDNA locus plays crucial role in carcinogenesis. In this review we discuss the data concerning the human rDNA and its closely associated factors as both targets and drivers of the pathways essential for carcinogenesis. We also examine whether variability in the structure of the locus may be blamed for the malignant transformation. Additionally, we consider the prospects of therapy focused on the activity of rDNA.
- Klíčová slova
- IGS, cancer, copy number, human rDNA, non-coding RNA, ribosomal genes,
- MeSH
- genetická variace genetika MeSH
- intergenová DNA genetika MeSH
- lidé MeSH
- mutace genetika MeSH
- nádory genetika patologie MeSH
- nekódující RNA genetika MeSH
- ribozomální DNA genetika MeSH
- ribozomy genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- intergenová DNA MeSH
- nekódující RNA MeSH
- ribozomální DNA MeSH
Human ribosomal DNA is represented by hundreds of repeats in each cell. Every repeat consists of two parts: a 13 kb long 47S DNA with genes encoding 18S, 5.8S, and 28S RNAs of ribosomal particles, and a 30 kb long intergenic spacer (IGS). Remarkably, transcription does not take place in all the repeats. The transcriptionally silent genes are characterized by the epigenetic marks of the inactive chromatin, including DNA hypermethylation of the promoter and adjacent areas. However, it is still unknown what causes the differentiation of the genes into active and silent. In this study, we examine whether this differentiation is related to the nucleotide sequence of IGS. We isolated ribosomal DNA from the nucleoli of human-derived HT1080 cells, and separated methylated and non-methylated DNA by chromatin immunoprecipitation. Then, we used PCR to amplify a 2 kb long region upstream of the transcription start and sequenced the product. We found that six SNVs and a series of short deletions in a region of simple repeats correlated with the DNA methylation status. These data indicate that variability of IGS sequence may initiate silencing of the ribosomal genes. Our study also suggests a number of pathways to this silencing that involve micro-RNAs and/or non-canonical DNA structures.
- Klíčová slova
- micro-RNAs, non-canonical DNA structures, rDNA, sequence variability, transcription,
- MeSH
- intergenová DNA MeSH
- lidé MeSH
- mezerníky ribozomální DNA genetika MeSH
- ribozomální DNA genetika MeSH
- ribozomy * MeSH
- RNA ribozomální 28S genetika MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- intergenová DNA MeSH
- mezerníky ribozomální DNA MeSH
- ribozomální DNA MeSH
- RNA ribozomální 28S MeSH
Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
- Klíčová slova
- CAF-1, RAD51, RTEL1, genome stability, rDNA organization, rRNA genes, ribosome,
- MeSH
- Arabidopsis genetika MeSH
- DNA rostlinná genetika MeSH
- genetická transkripce MeSH
- genová dávka MeSH
- lidé MeSH
- mechy genetika MeSH
- nestabilita genomu MeSH
- oprava DNA * MeSH
- replikace DNA MeSH
- restrukturace chromatinu MeSH
- ribozomální DNA genetika MeSH
- stárnutí genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA rostlinná MeSH
- ribozomální DNA MeSH
We have investigated the in situ organization of ribosomal gene (rDNA) transcription and replication in HeLa cells. Fluorescence in situ hybridization (FISH) revealed numerous rDNA foci in the nucleolus. Each rDNA focus corresponds to a higher order chromatin domain containing multiple ribosomal genes. Multi-channel labeling experiments indicated that, in the majority of cells, all the rDNA foci were active in transcription as demonstrated by co-localization with signals to transcription and fibrillarin, a protein involved in ribosomal RNA processing. In some cells, however, a small portion of the rDNA foci did not overlap with signals to transcription and fibrillarin. Labeling for DNA replication revealed that those rDNA foci inactive in transcription were restricted to the S-phase of the cell cycle and were replicated predominantly from mid to late S-phase. Electron microscopic analysis localized the nucleolar transcription, replication, and fibrillarin signals to the dense fibrillar components of the nucleolus and at the borders of the fibrillar centers. We propose that the rDNA foci are the functional units for coordinating replication and transcription of the rRNA genes in space and time. This involves a global switching mechanism, active from mid to late S-phase, for turning off transcription and turning on replication at individual rDNA foci. Once all the rRNA genes at individual foci are replicated, these higher order chromatin domains are reprogrammed for transcription.
- MeSH
- elektronová mikroskopie MeSH
- fluorescenční mikroskopie MeSH
- genetická transkripce * MeSH
- HeLa buňky MeSH
- lidé MeSH
- replikace DNA * MeSH
- ribozomální DNA genetika ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
Non-canonical structures (NCS) refer to the various forms of DNA that differ from the B-conformation described by Watson and Crick. It has been found that these structures are usual components of the genome, actively participating in its essential functions. The present review is focused on the nine kinds of NCS appearing or likely to appear in human ribosomal DNA (rDNA): supercoiling structures, R-loops, G-quadruplexes, i-motifs, DNA triplexes, cruciform structures, DNA bubbles, and A and Z DNA conformations. We discuss the conditions of their generation, including their sequence specificity, distribution within the locus, dynamics, and beneficial and detrimental role in the cell.
- Klíčová slova
- DNA quadruplexes, Non-canonical DNA, R-loops, rDNA,
- MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- ribozomální DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ribozomální DNA MeSH
In human cells, the intergenic spacers (IGS), which separate ribosomal genes, are complex approximately 30 kb-long loci. Recent studies indicate that all, or almost all, parts of IGS may be transcribed, and that at least some of them are involved in the regulation of the ribosomal DNA (rDNA) transcription, maintenance of the nucleolar architecture, and response of the cell nucleus to stress. However, since each cell contains hundreds not quite identical copies of IGS, the structure and functions of this locus remain poorly understood, and the dynamics of its products has not been specially studied. In this work, we used quantitative PCR to measure the expression levels of various rDNA regions at different times after inhibition of the transcription by Actinomycin D applied in high doses. This approach allowed us to measure real or extrapolated half-life times of some IGS loci. Our study reveals characteristic dynamic patterns suggestive of various pathways of RNA utilization and decay.
- Klíčová slova
- Intergenic spacer, Processing, RNA decay, lncRNAs, rDNA,
- MeSH
- HeLa buňky MeSH
- lidé MeSH
- mezerníky ribozomální DNA chemie genetika metabolismus MeSH
- RNA analýza biosyntéza genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mezerníky ribozomální DNA MeSH
- RNA MeSH
Chromatin Assembly Factor 1 (CAF1) is a three-subunit H3/H4 histone chaperone responsible for replication-dependent nucleosome assembly. It is composed of CAC 1-3 in yeast; p155, p60, and p48 in humans; and FASCIATA1 (FAS1), FAS2, and MULTICOPY SUPPRESSOR OF IRA1 in Arabidopsis thaliana. We report that disruption of CAF1 function by fas mutations in Arabidopsis results in telomere shortening and loss of 45S rDNA, while other repetitive sequences (5S rDNA, centromeric 180-bp repeat, CACTA, and Athila) are unaffected. Substantial telomere shortening occurs immediately after the loss of functional CAF1 and slows down at telomeres shortened to median lengths around 1 to 1.5 kb. The 45S rDNA loss is progressive, leaving 10 to 15% of the original number of repeats in the 5th generation of mutants affecting CAF1, but the level of the 45S rRNA transcripts is not altered in these mutants. Increasing severity of the fas phenotype is accompanied by accumulation of anaphase bridges, reduced viability, and plant sterility. Our results show that appropriate replication-dependent chromatin assembly is specifically required for stable maintenance of telomeres and 45S rDNA.
- MeSH
- Arabidopsis genetika metabolismus MeSH
- DNA rostlinná genetika metabolismus MeSH
- faktor 1 pro uspořádání chromatinu genetika metabolismus MeSH
- inzerční mutageneze MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- restrukturace chromatinu MeSH
- ribozomální DNA genetika metabolismus MeSH
- RNA ribozomální genetika metabolismus MeSH
- telomery metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- faktor 1 pro uspořádání chromatinu MeSH
- FAS protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- ribozomální DNA MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 45S MeSH Prohlížeč
Free ranging ungulates, represented in Europe mostly by several deer species, are important hosts for ticks and reservoirs of tick-borne infections. A number of studies have focused on the prevalence of tick borne pathogens in deer chiefly with the aim to determine their potential role as reservoir hosts for important human and livestock pathogens. However, genetic similarity of Babesia spp. forming a group commonly termed as a clade VI that accommodates the deer piroplasms, complicates this task and has led to the description of a bewildering array of poorly characterised strains. This study aims to resolve this issue by using two independent genetic loci, nuclear 18S rRNA and mitochondrial cytochrome c oxidase subunit I genes, used in parallel to identify Babesia isolates in free-ranging red, sika, and roe deer in two areas of their co-occurrence in the Czech Republic. The COX1 loci, in contrast to 18S rRNA gene, shows a clear difference between interspecific and intraspecific variation at the nucleotide level. The findings confirm B. divergens, Babesia sp. EU1 and B. capreoli in studied deer species as well as common presence of another unnamed species that matches a taxon previously referred to as Babesia sp. or Babesia cf. odocoilei or Babesia CH1 group in several other sites throughout Europe. The invasive sika deers enter the life cycle of at least three piroplasmid species detected in native deer fauna. The presence of B. divergens in both sika and red deer in an area where bovine babesiosis is apparently absent raises important questions regarding the epidemiology, host specificity and taxonomic status of the parasite.
- Klíčová slova
- 18S rDNA, Babesia, COX1, Deer, Phylogeny, Piroplasmids,
- MeSH
- Babesia klasifikace genetika MeSH
- babezióza parazitologie virologie MeSH
- cyklooxygenasa 1 genetika MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- protozoální DNA genetika MeSH
- protozoální proteiny genetika MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA metody MeSH
- vysoká zvěř parazitologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- cyklooxygenasa 1 MeSH
- protozoální DNA MeSH
- protozoální proteiny MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
Canine babesiosis caused by Babesia canis sensu stricto became an emerging disease of dogs across Europe calling for attention also in countries where it was an only rare imported disease. An easy accessibility of molecular methods and the growing amount of sequencing data led to the description of intraspecific variability in 18S rDNA sequences designated as "genotypes". Using material from a homogenous cohort of dogs with microscopically confirmed canine babesiosis caused by B. canis, we evaluated Babesia intraspecific variability and amplification sensitivity of three different genes (18S rDNA, COI, Cytb) to assess their potential as diagnostic or phylogenetic markers. In raw sequencing data obtained, we observed at least 3 ambiguous positions in up to 86% of chromatograms within the ∼560 bp fragment of 18S rDNA suggesting the existence of several, not identical copies of this gene. Our COI haplotype analysis resulted in a star-like pattern indicating a recent origin of most haplotypes, but not supporting the existence of two dominant haplotypes. Similarly, the Cytb sequences obtained from samples with all variants of 18S rDNA were identical. We corroborate previous observations from three other European countries and bring the evidence of the existence of 18S rDNA paralogs in B. canis genome replacing currently used "genotype" theory.
- Klíčová slova
- 18S rDNA paralog, Babesia canis, COI, Cytb, Genotype,
- MeSH
- Babesia genetika MeSH
- babezióza krev diagnóza parazitologie MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genetické markery MeSH
- genom protozoální MeSH
- genotyp * MeSH
- haplotypy MeSH
- kohortové studie MeSH
- mitochondrie genetika MeSH
- nemoci psů diagnóza parazitologie MeSH
- protozoální DNA genetika MeSH
- psi MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- genetické markery MeSH
- protozoální DNA MeSH
- RNA ribozomální 18S MeSH