poly(N,N-diethylacrylamide) Dotaz Zobrazit nápovědu
Temperature response of double network (DN) hydrogels composed of thermoresponsive poly(N,N'-diethylacrylamide) (PDEAAm) and hydrophilic polyacrylamide (PAAm) or poly(N,N`-dimethylacrylamide) (PDMAAm) was studied by a combination of swelling measurements, differential scanning calorimetry (DSC) and 1H NMR and UV-Vis spectroscopies. Presence of the second hydrophilic network in DN hydrogels influenced their thermal sensitivity significantly. DN hydrogels show less intensive changes in deswelling, smaller enthalpy, and entropy changes connected with phase transition and broader temperature interval of the transition than the single network (SN) hydrogels. Above the transition, the DN hydrogels contain significantly more permanently bound water in comparison with SN hydrogels due to interaction of water with the hydrophilic component. Unlike swelling and DSC experiments, a rather abrupt transition was revealed from temperature-dependent NMR spectra. Release study showed that model methylene blue molecules are released from SN and DN hydrogels within different time scale. New thermodynamical model of deswelling behaviour based on the approach of the van't Hoff analysis was developed. The model allows to determine thermodynamic parameters connected with temperature-induced volume transition, such as the standard change of enthalpy and entropy and critical temperatures and characterize the structurally different states of water.
- Klíčová slova
- NMR spectroscopy, differential scanning calorimetry, double network, poly(N,N′-diethylacrylamide), swelling, thermoresponsive hydrogel,
- Publikační typ
- časopisecké články MeSH
Poly(N,N-diethylacrylamide) (PDEAAm) hydrogel scaffolds were prepared by radical copolymerization of N,N-diethylacrylamide (DEAAm), N,N'-methylenebisacrylamide and methacrylic acid in the presence of (NH₄)₂SO₄ or NaCl. The hydrogels were characterized by low-vacuum scanning electron microscopy in the water-swollen state, water and cyclohexane regain, and by mercury porosimetry. The pentapeptide, YIGSR-NH₂, was immobilized on the hydrogel. Human embryonic stem cells (hESCs) were cultured with the hydrogels to test their biocompatibility. The results suggest that the PDEAAm hydrogel scaffolds are nontoxic and support hESC attachment and proliferation, and that interconnected pores of the scaffolds are important for hESC cultivation. Immobilization of YIGSR-NH₂ pentapeptide on the PDEAAm surface improved both adhesion and growth of hESCs compared with the unmodified hydrogel. The YIGSR-NH₂-modified PDEAAm hydrogels may be a useful tool for tissue-engineering purposes.
- MeSH
- akrylamidy chemie MeSH
- buněčné linie MeSH
- embryonální kmenové buňky cytologie MeSH
- hydrogely chemie MeSH
- lidé MeSH
- myši MeSH
- oligopeptidy chemie MeSH
- polymery chemie MeSH
- proliferace buněk MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylamidy MeSH
- hydrogely MeSH
- oligopeptidy MeSH
- poly(N,N-diethylacrylamide) MeSH Prohlížeč
- polymery MeSH
Swelling experiments and NMR spectroscopy were combined to study effect of various stimuli on the behavior of hydrogels with a single- and double-network (DN) structure composed of poly(N,N'-diethylacrylamide) and polyacrylamide (PAAm). The sensitivity to stimuli in the DN hydrogel was found to be significantly affected by the introduction of the second component and the formation of the double network. The interpenetrating structure in the DN hydrogel causes the units of the component, which is insensitive to the given stimulus in the form of the single network (SN) hydrogel, to be partially formed as globular structures in DN hydrogel. Due to the hydrophilic PAAm groups, temperature- and salt-induced changes in the deswelling of the DN hydrogel are less intensive and gradual compared to those of the SN hydrogel. The swelling ratio of the DN hydrogel shows a significant decrease in the dependence on the acetone content in acetone-water mixtures. A certain portion of the solvent molecules bound in the globular structures was established from the measurements of the 1H NMR spin-spin relaxation times T2 for the studied DN hydrogel. The time-dependent deswelling and reswelling kinetics showed a two-step profile, corresponding to the solvent molecules being released and absorbed during two processes with different characteristic times.
- Klíčová slova
- NMR spectroscopy, double network, poly(N,N′-diethylacrylamide), stimuli-responsive hydrogels, swelling, swelling/deswelling kinetics,
- Publikační typ
- časopisecké články MeSH
Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.
- Klíčová slova
- LCST, biodistribution, poly(2,2-difluoroethyl)acrylamide, poly(N,N-diethylacrylamide), poly(N-acryloylpyrolidine), poly(N-isopropylacrylamide), polyacrylamide, rational polymer design,
- MeSH
- myši MeSH
- polymery * MeSH
- teplota MeSH
- tkáňová distribuce MeSH
- uvolňování léčiv MeSH
- voda * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polymery * MeSH
- voda * MeSH
Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels.
- Klíčová slova
- acrylamide-based polymers, biomedical applications, double network, drug delivery, hydrophilic polymer, interpenetrating polymer network, lower critical solution temperature, mechanical properties, pH responsiveness, poly(N,N-diethylacrylamide), poly(N-isopropylacrylamide), polymer hydrogel, stimuli-responsive polymers, temperature responsiveness,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH