reactive oxygen species
Dotaz
Zobrazit nápovědu
Reactive oxygen and nitrogen species are essential components of diverse intracellular signaling pathways. In addition to their involvement in apoptosis, reactive oxygen and nitrogen species are crucial in the regulation of multiple developmental and physiological processes. This review aims to summarize their role in the regulation of key ovarian stages: ovulation, maturation and postovulatory ageing of the oocyte, and the formation and regression of the corpus luteum. At the cellular level, a mild increase in reactive oxygen and nitrogen species is associated with the initiation of a number of regulatory mechanisms, which might be suppressed by increased activity of the antioxidant system. Moreover, a mild increase in reactive oxygen and nitrogen species has been linked to the control of mitochondrial biogenesis and abundance in response to increased cellular energy demands. Thus, reactive oxygen and nitrogen species should also be perceived in terms of their positive role in cellular signaling. On the other hand, an uncontrolled increase in reactive oxygen species production or strong down-regulation of the antioxidant system results in oxidative stress and damage of cellular components associated with ovarian pathologies and ageing. Similarly, the disturbance of signaling functions of reactive nitrogen species caused by dysregulation of nitric oxide production by nitric oxide synthases in ovarian tissues interferes with the proper regulation of physiological processes in the ovary.
- Klíčová slova
- corpus luteum, nitric oxide, ovarian regulation, oxidative stress, reactive nitrogen species, reactive oxygen species,
- MeSH
- lidé MeSH
- ovarium * fyziologie metabolismus MeSH
- ovulace fyziologie MeSH
- oxidační stres fyziologie MeSH
- reaktivní formy dusíku * metabolismus MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy dusíku * MeSH
- reaktivní formy kyslíku * MeSH
It is well known that biological systems, such as microorganisms, plants, and animals, including human beings, form spontaneous electronically excited species through oxidative metabolic processes. Though the mechanism responsible for the formation of electronically excited species is still not clearly understood, several lines of evidence suggest that reactive oxygen species (ROS) are involved in the formation of electronically excited species. This review attempts to describe the role of ROS in the formation of electronically excited species during oxidative metabolic processes. Briefly, the oxidation of biomolecules, such as lipids, proteins, and nucleic acids by ROS initiates a cascade of reactions that leads to the formation of triplet excited carbonyls formed by the decomposition of cyclic (1,2-dioxetane) and linear (tetroxide) high-energy intermediates. When chromophores are in proximity to triplet excited carbonyls, the triplet-singlet and triplet-triplet energy transfers from triplet excited carbonyls to chromophores result in the formation of singlet and triplet excited chromophores, respectively. Alternatively, when molecular oxygen is present, the triplet-singlet energy transfer from triplet excited carbonyls to molecular oxygen initiates the formation of singlet oxygen. Understanding the mechanism of the formation of electronically excited species allows us to use electronically excited species as a marker for oxidative metabolic processes in cells.
- Klíčová slova
- chromophores, electronically excited species, hydrogen peroxide, hydroxyl radical, oxidative radical reactions, reactive oxygen species, singlet oxygen, superoxide anion radical,
- MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- oxidace-redukce MeSH
- přenos energie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyslík MeSH
- reaktivní formy kyslíku MeSH
Abstract Reactive oxygen species (ROS) and reactive nitrogen species have generally been considered as being highly reactive and cytotoxic molecules. Besides their noxious effects, ROS participate in physiological processes in a carefully regulated manner. By way of example, microbicidal ROS are produced in professional phagocytes, ROS function as short-lived messengers having a role in signal transduction and, among other processes, participate in the synthesis of the iodothyronine hormones, reproduction, apoptosis and necrosis. Because of their ability to mediate a crosstalk between key molecules, their role might be dual (at least in some cases). The levels of ROS increase from a certain age, being associated with various diseases typical of senescence. The aim of this review is to summarize the recent findings on the physiological role of ROS. Other issues addressed are an increase in ROS levels during ageing, and the possibility of the physiological nature of this process.
- MeSH
- lidé MeSH
- reaktivní formy dusíku fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy dusíku MeSH
- reaktivní formy kyslíku MeSH
Reactive oxygen species play a significant role in male fertility and infertility. They are essential for physiological processes, but when their concentration becomes excessive, they can be a cause of various sperm pathologies. Seminal leukocytes and pathologically abnormal sperm are the primary sources of oxygen radicals in ejaculate. They negatively affect sperm quality, including DNA fragmentation and sperm motility impairment. Addressing increased concentrations of reactive oxygen species involves various appropriate lifestyle modifications and measures, including the use of antioxidants, treatment of urogenital infections, management of varicocele, weight reduction, and others. In many cases, these interventions can lead to adjustments in the condition and improvement in sperm quality. Such improvements can subsequently lead to enhanced outcomes in assisted reproduction or even an increased likelihood of natural conception. In some instances, the need for donor sperm may be eliminated. However, a key factor is adhering to a sufficiently prolonged treatment, which requires patience on the part of both, the physician and the patient.
- Klíčová slova
- DNA fragmentation, Male infertility, infertility, reactive oxygen species, spermatocytes pathology,
- MeSH
- fertilita fyziologie MeSH
- lidé MeSH
- mužská infertilita * metabolismus etiologie MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- spermie metabolismus fyziologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku * MeSH
Ultra-weak photon emission originates from the relaxation of electronically excited species formed in the biological systems such as microorganisms, plants and animals including humans. Electronically excited species are formed during the oxidative metabolic processes and the oxidative stress reactions that are associated with the production of reactive oxygen species (ROS). The review attempts to overview experimental evidence on the involvement of superoxide anion radical, hydrogen peroxide, hydroxyl radical and singlet oxygen in both the spontaneous and the stress-induced ultra-weak photon emission. The oxidation of biomolecules comprising either the hydrogen abstraction by superoxide anion and hydroxyl radicals or the cycloaddition of singlet oxygen initiate a cascade of oxidative reactions that lead to the formation of electronically excited species such as triplet excited carbonyl, excited pigments and singlet oxygen. The photon emission of these electronically excited species is in the following regions of the spectrum (1) triplet excited carbonyl in the near UVA and blue-green areas (350-550nm), (2) singlet and triplet excited pigments in the green-red (550-750nm) and red-near IR (750-1000nm) areas, respectively and (3) singlet oxygen in the red (634 and 703nm) and near IR (1270nm) areas. The understanding of the role of ROS in photon emission allows us to use the spontaneous and stress-induced ultra-weak photon emission as a non-invasive tool for monitoring of the oxidative metabolic processes and the oxidative stress reactions in biological systems in vivo, respectively.
- Klíčová slova
- Chemiluminescence, Chlorophyll, Hydrogen peroxide, Hydroxyl radical, Lipid peroxidation, Metabolic oxidative processes, Reactive oxygen species, Singlet oxygen, Skin pigment, Superoxide anion radical,
- MeSH
- elektrony MeSH
- fotobiologie metody MeSH
- fotony * MeSH
- lidé MeSH
- oxidace-redukce MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) - a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.
Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.
- Klíčová slova
- Chloroplast-to-nucleus retrograde signaling, Lipid peroxidation, Protein oxidation, Reactive oxygen species,
- MeSH
- chloroplasty * metabolismus MeSH
- fotosystém II (proteinový komplex) * metabolismus MeSH
- lipidy MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fotosystém II (proteinový komplex) * MeSH
- lipidy MeSH
- reaktivní formy kyslíku MeSH
The catalytic role of iron in the Haber-Weiss chemistry, which results in propagation of damaging reactive oxygen species (ROS), is well established. In this review, we attempt to summarize the recent evidence showing the reverse: That reactive oxygen and nitrogen species can significantly affect iron metabolism. Their interaction with iron-regulatory proteins (IRPs) seems to be one of the essential mechanisms of influencing iron homeostasis. Iron depletion is known to provoke normal iron uptake via IRPs, superoxide and hydrogen peroxide are supposed to cause unnecessary iron uptake by similar mechanism. Furthermore, ROS are able to release iron from iron-containing molecules. On the contrary, nitric oxide (NO) appears to be involved in cellular defense against the iron-mediated ROS generation probably mainly by inducing iron removal from cells. In addition, NO may attenuate the effect of superoxide by mutual reaction, although the reaction product-peroxynitrite-is capable to produce highly reactive hydroxyl radicals.
- MeSH
- lidé MeSH
- proteiny obsahující železo a síru metabolismus MeSH
- reaktivní formy dusíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proteiny obsahující železo a síru MeSH
- reaktivní formy dusíku MeSH
- reaktivní formy kyslíku MeSH
- železo MeSH
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.
- Klíčová slova
- OXPHOS, Respiratory complex II, cancer, mitochondria, reactive oxygen species, succinate, succinate dehydrogenase, tricarboxylic acid cycle,
- MeSH
- cílená molekulární terapie * MeSH
- lidé MeSH
- mitochondriální nemoci farmakoterapie metabolismus patologie MeSH
- mitochondrie metabolismus patologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- respirační komplex II metabolismus MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
- respirační komplex II MeSH
Marine phytoplankton produce and scavenge Reactive Oxygen Species, to support cellular processes, while limiting damaging reactions. Some prokaryotic picophytoplankton have, however, lost all genes encoding scavenging of hydrogen peroxide. Such losses of metabolic function can only apply to Reactive Oxygen Species which potentially traverse the cell membrane outwards, before provoking damaging intracellular reactions. We hypothesized that cell radius influences which elements of Reactive Oxygen Species metabolism are partially or fully dispensable from a cell. We therefore investigated genomes and transcriptomes from diverse marine eukaryotic phytoplankton, ranging from 0.4 to 44 μm radius, to analyze the genomic allocations encoding enzymes metabolizing Reactive Oxygen Species. Superoxide has high reactivity, short lifetimes and limited membrane permeability. Genes encoding superoxide scavenging are ubiquitous across phytoplankton, but the fractional gene allocation decreased with increasing cell radius, consistent with a nearly fixed set of core genes for scavenging superoxide pools. Hydrogen peroxide has lower reactivity, longer intracellular and extracellular lifetimes and readily crosses cell membranes. Genomic allocations to both hydrogen peroxide production and scavenging decrease with increasing cell radius. Nitric Oxide has low reactivity, long intracellular and extracellular lifetimes and readily crosses cell membranes. Neither Nitric Oxide production nor scavenging genomic allocations changed with increasing cell radius. Many taxa, however, lack the genomic capacity for nitric oxide production or scavenging. The probability of presence of capacity to produce nitric oxide decreases with increasing cell size, and is influenced by flagella and colony formation. In contrast, the probability of presence of capacity to scavenge nitric oxide increases with increasing cell size, and is again influenced by flagella and colony formation.
- MeSH
- fytoplankton genetika metabolismus MeSH
- genomika MeSH
- oxid dusnatý * metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- superoxidy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxid dusnatý * MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
- superoxidy * MeSH