structural flexibility
Dotaz
Zobrazit nápovědu
Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases.
- Klíčová slova
- allostery, disorder, protein complexes, protein folding, protein structures, protein—DNA interactions, secondary structure, structural alphabet,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
β-Galactosidase from Bacillus circulans ATCC 31382 (BgaD) is a biotechnologically important enzyme for the synthesis of β-galactooligosaccharides (GOS). Among its four isoforms, isoform A (BgaD-A) has distinct synthetic properties. Here, we present cryoelectron microscopy (cryo-EM) structures of BgaD-A and compare them with the known X-ray crystal structure of isoform D (BgaD-D), revealing substantial structural divergences between the two isoforms. In contrast to BgaD-D, BgaD-A features a flexible Big-4 domain and another enigmatic domain. The newly identified flexible region in BgaD-A is termed as "barrier domain 8," and serves as a barricade, obstructing the access of longer oligosaccharide substrates into the active site of BgaD-A. The transgalactosylation reactions catalyzed by both isoforms revealed that BgaD-A has a higher selectivity than BgaD-D in the earlier stages of the reaction and is prevailingly directed to shorter galactooligosaccharides. This study improves our understanding of the structural determinants governing β-galactosidase catalysis, with implications for tailored GOS production.
- Klíčová slova
- cryo-EM, crystal structure, galactooligosaccharide, galactosidase, structural flexibility, substrate specificity, transgalactosylation,
- MeSH
- Bacillus * enzymologie MeSH
- bakteriální proteiny chemie metabolismus MeSH
- beta-galaktosidasa * chemie metabolismus genetika MeSH
- elektronová kryomikroskopie * MeSH
- izoenzymy chemie metabolismus MeSH
- katalytická doména * MeSH
- krystalografie rentgenová MeSH
- molekulární modely * MeSH
- oligosacharidy metabolismus chemie MeSH
- protein - isoformy chemie metabolismus MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- beta-galaktosidasa * MeSH
- izoenzymy MeSH
- oligosacharidy MeSH
- protein - isoformy MeSH
DNA is a structurally plastic molecule, and its biological function is enabled by adaptation to its binding partners. To identify the DNA structural polymorphisms that are possible in such adaptations, the dinucleotide structures of 60 000 DNA steps from sequentially nonredundant crystal structures were classified and an automated protocol assigning 44 distinct structural (conformational) classes called NtC (for Nucleotide Conformers) was developed. To further facilitate understanding of the DNA structure, the NtC were assembled into the DNA structural alphabet CANA (Conformational Alphabet of Nucleic Acids) and the projection of CANA onto the graphical representation of the molecular structure was proposed. The NtC classification was used to define a validation score called confal, which quantifies the conformity between an analyzed structure and the geometries of NtC. NtC and CANA assignment were applied to analyze the structural properties of typical DNA structures such as Dickerson-Drew dodecamers, guanine quadruplexes and structural models based on fibre diffraction. NtC, CANA and confal assignment, which is accessible at the website https://dnatco.org, allows the quantitative assessment and validation of DNA structures and their subsequent analysis by means of pseudo-sequence alignment. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Acta_Cryst_D:2.
- Klíčová slova
- DNA modelling, DNA structure, NMR structure, X-ray structure, bioinformatics,
- MeSH
- DNA chemie MeSH
- konformace nukleové kyseliny * MeSH
- molekulární modely * MeSH
- počítačová grafika MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
In the last decades, the structural flexibility of cytochromes P450 has been extensively studied by spectroscopic and in silico methods. Here, both approaches are reviewed and compared. Comparison of both methods indicates that the individual cytochromes P450 differ significantly in the flexibilities of their substrate-binding active sites. This finding probably accounts for the large number of isoforms of these enzymes (there are fifty-seven known cytochrome P450 genes in the human genome) and their functional versatility. On the other hand, most of the known cytochrome P450s have a set of common structural features, with an overall structure consisting of a relatively flexible domain (the distal side), a more rigid domain (the heme-binding core) and a domain on the proximal side of the hemoprotein with intermediate flexibility. Substrate access and product egress channels of CYP enzymes are also important structural elements as the majority of these channels are located in the flexible distal side; the location, flexibility, and function of these channels are discussed.
- MeSH
- konformace proteinů MeSH
- lidé MeSH
- simulace molekulární dynamiky MeSH
- spektrální analýza metody MeSH
- substrátová specifita MeSH
- systém (enzymů) cytochromů P-450 chemie MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- systém (enzymů) cytochromů P-450 MeSH
The crystal structures of diphenyl (cycloheptylamido)phosphate, C19H24NO3P or (C6H5O)2P(O)(NHC7H13), (I), and diphenyl (dibenzylamido)phosphate, C26H24NO3P or (C6H5O)2P(O)[N(CH2C6H5)2], (II), are reported. The NHC7H13 group in (I) provides two significant hydrogen-donor sites in N-H...O and C-H...O hydrogen bonds, needed for a one-dimensional hydrogen-bond pattern along [100] in the crystal, while (II), with a (C6H5CH2)2N moiety, lacks these hydrogen bonds, but its three-dimensional supramolecular structure is mediated by C-H...π interactions. The conformational behaviour of the phenyl rings in (I), (II) and analogous structures from the Cambridge Structural Database (CSD) were studied in terms of flexibility, volume of the other group attached to phosphorus and packing forces. From this study, synclinal (±sc), anticlinal (±ac) and antiperiplanar (±ap) conformations were found to occur. In the structure of (II), there is an intramolecular Cortho-H...O interaction that imposes a +sc conformation for the phenyl ring involved. For the structures from the CSD, the +sc and ±ap conformations appear to be mainly imposed by similar Cortho-H...O intramolecular interactions. The large contribution of the C...H/H...C contacts (32.3%) in the two-dimensional fingerprint plots of (II) is a result of the C-H...π interactions. The differential scanning calorimetry (DSC) analyses exhibit peak temperatures (Tm) at 109 and 81 °C for (I) and (II), respectively, which agree with the strengths of the intermolecular contacts and the melting points.
- Klíčová slova
- Cambridge Structural Database, amidophosphoester, conformational flexibility, crystal structure, energy framework, hydrogen bonding,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recently, two independent (15)N NMR relaxation studies indicated that in contrast to the decreased flexibility expected for induced-fit interactions, the backbone flexibility of major urinary protein isoform I (MUP-I) slightly increased upon complex formation with its natural pheromone 2-sec-butyl-4,5-dihydrothiazol. We have investigated the subtle details of molecular interactions by molecular dynamics simulations in explicit solvent. The calculated order parameters S(2) for a free- and ligand-bound protein supply evidence that mobility in various regions of MUP-I can be directly related to small conformational changes of the free- and complexed protein resulting from modifications of the hydrogen bonding network.
- MeSH
- feromony chemie metabolismus MeSH
- molekulární modely * MeSH
- počítačová simulace MeSH
- protein - isoformy chemie metabolismus MeSH
- proteiny * chemie metabolismus MeSH
- terciární struktura proteinů * MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- feromony MeSH
- major urinary proteins MeSH Prohlížeč
- protein - isoformy MeSH
- proteiny * MeSH
Fibroblast growth factor 2 (FGF2) is a signaling protein that plays a significant role in tissue development and repair. FGF2 binds to fibroblast growth factor receptors (FGFRs) alongside its co-factor heparin, which protects FGF2 from degradation. The binding between FGF2 and FGFRs induces intracellular signaling pathways such as RAS-MAPK, PI3K-AKT, and STAT. FGF2 has strong potential for application in cell culturing, wound healing, and cosmetics but the potential is severely limited by its low protein stability. The thermostable variant FGF2-STAB was constructed by computer-assisted protein engineering to overcome the natural limitation of FGF2. Previously reported characterization of FGF2-STAB revealed an enhanced ability to induce MAP/ERK signaling while having a lower dependence on heparin when compared with FGF2-wt. Here we report the crystal structure of FGF2-STAB solved at 1.3 Å resolution. Protein stabilization is achieved by newly formed hydrophobic interactions, polar contacts, and one additional hydrogen bond. The overall structure of FGF2-STAB is similar to FGF2-wt and does not reveal information on the experimentally observed lower dependence on heparin. A noticeable difference in flexibility in the receptor binding region can explain the differences in signaling between FGF2-STAB and its wild-type counterpart. Our structural analysis provided molecular insights into the stabilization and unique biological properties of FGF2-STAB.
- Klíčová slova
- Protein flexibility, Stabilized fibroblast growth factor 2, X-ray structural analysis,
- Publikační typ
- časopisecké články MeSH
Structural analysis of the orientations of heme vinyl side chains was carried out using the published crystallographic data for different cytochromes P450. Torsional angles (tau, C(alpha)C(beta)-C(a)C(b)) show different distributions for the vinyls in positions 2 and 4. Whereas the orientation of 2-vinyls is rather restricted (tau between -120 degrees and -180 degrees ), the 4-vinyls have a much higher mobility over almost the entire conformational space. On the basis of the empirical correlation recently reported for peroxidases (M.P. Marzocchi, G. Smulevich, Relationship between heme vinyl conformation and the protein matrix in peroxidases, J. Raman Spectrosc. 34 (2003), 725-736), an attempt has been made to compare the observed vinyl orientations with the experimental frequencies of the vinyl stretching vibrational modes. The data for P450 proteins do not exactly match the peroxidase-derived function, although a qualitatively similar relationship is likely to exist. Differences between P450 forms suggest a variability in heme-region flexibility and in communication with the rest of enzyme.
- MeSH
- 5-monooxygenasa kafru chemie MeSH
- bakteriální proteiny chemie MeSH
- hem chemie MeSH
- izoenzymy chemie MeSH
- konformace proteinů MeSH
- NADPH-cytochrom c-reduktasa MeSH
- oxygenasy se smíšenou funkcí chemie MeSH
- Ramanova spektroskopie MeSH
- systém (enzymů) cytochromů P-450 chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5-monooxygenasa kafru MeSH
- bakteriální proteiny MeSH
- flavocytochrome P450 BM3 monoxygenases MeSH Prohlížeč
- hem MeSH
- izoenzymy MeSH
- NADPH-cytochrom c-reduktasa MeSH
- oxygenasy se smíšenou funkcí MeSH
- systém (enzymů) cytochromů P-450 MeSH
Radiation damage in DNA is caused mainly by hydroxyl radicals which are generated by ionizing radiation in water and removing hydrogen atoms from the DNA chain. This damage affects certain nucleotide sequences more than others due to differences in the local structure of the DNA chains. This sequence dependence has been analyzed experimentally and calculated theoretically for a rigid DNA model. In this paper we take into account the flexibility of the DNA chain and show how it modifies the strand breakage probabilities. We use a simple harmonic model for DNA flexibility which permits the study of a long (68 base pair) fragment with modest computational effort. The essential influence of flexibility is an increased breakage probability towards the ends of the fragment, which can also be identified in the experimental data.
- MeSH
- DNA chemie účinky záření MeSH
- konformace nukleové kyseliny * MeSH
- ohebnost (fyzika) MeSH
- počítačová simulace * MeSH
- poškození DNA účinky záření MeSH
- pravděpodobnost MeSH
- tolerance záření * MeSH
- vodík MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- vodík MeSH
High-risk human papillomaviruses (HPVs) cause various cancers. While type-specific prophylactic vaccines are available, additional anti-viral strategies are highly desirable. Initial HPV cell entry involves receptor-switching induced by structural capsid modifications. These modifications are initiated by interactions with cellular heparan sulphates (HS), however, their molecular nature and functional consequences remain elusive. Combining virological assays with hydrogen/deuterium exchange mass spectrometry, and atomic force microscopy, we investigate the effect of capsid-HS binding and structural activation. We show how HS-induced structural activation requires a minimal HS-chain length and simultaneous engagement of several binding sites by a single HS molecule. This engagement introduces a pincer-like force that stabilizes the capsid in a conformation with extended capsomer linkers. It results in capsid enlargement and softening, thereby likely facilitating L1 proteolytic cleavage and subsequent L2-externalization, as needed for cell entry. Our data supports the further devising of prophylactic strategies against HPV infections.
- MeSH
- heparitinsulfát * metabolismus chemie MeSH
- infekce papilomavirem virologie MeSH
- internalizace viru * MeSH
- kapsida * metabolismus chemie MeSH
- lidé MeSH
- lidské papilomaviry MeSH
- lidský papilomavirus 16 metabolismus fyziologie MeSH
- mikroskopie atomárních sil * MeSH
- Papillomaviridae fyziologie MeSH
- polysacharidy metabolismus chemie MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- virové plášťové proteiny * metabolismus chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heparitinsulfát * MeSH
- polysacharidy MeSH
- virové plášťové proteiny * MeSH