structure−activity relationships
Dotaz
Zobrazit nápovědu
The study presents new information about the structure-activity relationships of the skin permeation enhancers. A series of ceramide analogues including eight different polar head groups and six different chain lengths was synthesised. The compounds were evaluated as permeation enhancers in vitro using porcine skin. The physico-chemical parameters of the tested compounds obtained by computer modelling were used to evaluate, by multiple linear regression, the enhancement ratios (ERs) of the compounds. The regression analysis suggests that the hydrogen bonding ability of the compounds is inversely related to the ER values and that the molecular size and lipophilicity must be well balanced. In the studied enhancers having the same chain length, the enhancement activity is dependent only on their permeability coefficients. This finding confirms the Warner's hypothesis that the polar head of an enhancer is responsible for the permeation and anchoring of the molecule into the stratum corneum lipids and that it does not influence the mechanism of action. For the specific action of enhancers, that is disordering of the intercellular lipid packing, the length of the hydrophobic chain(s) and not the lipophilicity is important. Furthermore, the examination of the FTIR spectra indicated that the most active substances possess the most ordered chains. The described relationships could bring more rational approaches in designing new potent enhancers for transdermal formulations.
- MeSH
- ceramidy chemie farmakologie MeSH
- kůže účinky léků metabolismus MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- molekulární struktura MeSH
- permeabilita účinky léků MeSH
- prasata MeSH
- techniky in vitro MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
A quantitative structure-activity relationship (QSAR) model dependent on log P(n - octanol/water), or log P(OW), was developed with acute toxicity index EC50, the median effective concentration measured as inhibition of movement of the oligochaeta Tubifex tubifex with 3 min exposure, EC50(Tt) (mol/L): log EC50(Tt) = -0.809 (+/-0.035) log P(OW) - 0.495 (+/-0.060), n=82, r=0.931, r2=0.867, residual standard deviation of the estimate 0.315. A learning series for the QSAR model with the oligochaete contained alkanols, alkenols, and alkynols; saturated and unsaturated aldehydes; aniline and chlorinated anilines; phenol and chlorinated phenols; and esters. Three cross-validation procedures proved the robustness and stability of QSAR models with respect to the chemical structure of compounds tested within a series of compounds used in the learning series. Predictive ability was described by q2 .801 (cross-validated r2; predicted variation estimated with cross-validation) in LSO (leave-a structurally series-out) cross-validation.
Inhibition of photosynthetic electron transport (PET) in spinach chloroplasts by sixty-one ring-substituted N-benzylsalicylamides was investigated. The inhibitory potency of the compounds expressed by IC50 value varied from 2.0 to 425.3 μmol/L. Several evaluated compounds can be considered as effective PET inhibitors; these include N-(3,4- dichlorobenzyl)-2-hydroxy-5-nitrobenzamide (IC50 = 2.0 μmol/L), 3,5-dibromo-N-(3,4-dichlorobenzyl)-2-hydroxybenzamide (IC50 = 2.3 μmol/L) and 3,5-dibromo-N-(4-chlorobenzyl)-2-hydroxybenzamide (IC50 = 2.6 μmol/L) with activity comparable with that of the standard Diuron (IC50 = 1.9 μmol/L). The PET inhibiting activity increased approximately linearly with increasing lipophilicity of the compounds as well as with the increasing sum of Hammett σ constants of the substituents on the acyl fragment (R(1) = H, 5-OCH3, 5-CH3, 5-Cl, 5-Br, 5-NO2, 4-OCH3, 4-Cl, 3,5-Cl and 3,5-Br) and the benzylamide fragment (R(2) = H, 4-OCH3, 4-CH3, 4-F, 4-Cl and 3,4-Cl). Based on the evaluated structure-PET inhibiting activity relationships (QSAR) it was confirmed that the inhibitory activity of the compounds depends on lipophilicity (log P or distributive parameters π; (1) and π(2)of individual substituents) and electronic properties of the substituents on the acyl (σ(1)) and the benzylamide fragments (σ(2)), the contribution of σ(1) being more significant than that of σ(2).
- MeSH
- chemické modely MeSH
- chloroplasty účinky léků metabolismus MeSH
- fotosyntéza účinky léků MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- molekulární struktura MeSH
- racionální návrh léčiv MeSH
- salicylamidy chemická syntéza chemie farmakologie MeSH
- Spinacia oleracea účinky léků metabolismus MeSH
- transport elektronů účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- salicylamidy MeSH
The review brings the status of research into DNA gyrase inhibitors up to date. Structure-activity relationships in both coumarin antibiotics, like novobiocin or coumermycins, and quinolones are discussed. In the section dealing with the quinolones, promising drugs under further evaluation are pointed out. Recently discovered new types of DNA gyrase inhibitors, i.e. tetramic acid derivatives and biphenyl dicarboxylic acid monoamides, are also briefly mentioned.
Tick-borne encephalitis (TBE) represents one of the most serious arboviral neuro-infections in Europe and northern Asia. As no specific antiviral therapy is available at present, there is an urgent need for efficient drugs to treat patients with TBE virus (TBEV) infection. Using two standardised in vitro assay systems, we evaluated a series of 29 nucleoside derivatives for their ability to inhibit TBEV replication in cell lines of neuronal as well as extraneural origin. The series of tested compounds included 2'-C- or 2'-O-methyl substituted nucleosides, 2'-C-fluoro-2'-C-methyl substituted nucleosides, 3'-O-methyl substituted nucleosides, 3'-deoxynucleosides, derivatives with 4'-C-azido substitution, heterobase modified nucleosides and neplanocins. Our data demonstrate a relatively stringent structure-activity relationship for modifications at the 2', 3', and 4' nucleoside positions. Whereas nucleoside derivatives with the methylation at the C2' position or azido modification at the C4'position exerted a strong TBEV inhibition activity (EC50 from 0.3 to 11.1 μM) and low cytotoxicity in vitro, substitutions of the O2' and O3' positions led to a complete loss of anti-TBEV activity (EC50 > 50 μM). Moreover, some structural modifications of the heterobase moiety resulted in a high increase of cytotoxicity in vitro. High antiviral activity and low cytotoxicity of C2' methylated or C4' azido substituted pharmacophores suggest that such compounds might represent promising candidates for further development of potential therapeutic agents in treating TBEV infection.
- Klíčová slova
- Antiviral activity, Cytotoxicity, Nucleoside inhibitor, Structure-activity relationship, Tick-borne encephalitis,
- MeSH
- antivirové látky chemie farmakologie MeSH
- buněčné linie MeSH
- klíšťová encefalitida farmakoterapie virologie MeSH
- molekulární struktura MeSH
- nukleosidy chemie farmakologie MeSH
- prasata MeSH
- replikace viru účinky léků MeSH
- viry klíšťové encefalitidy účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- nukleosidy MeSH
Toxic effects of many persistent organic pollutants (e.g., polychlorinated biphenyls or polychlorinated dibenzo-p-dioxins and furans) are mediated via the aryl hydrocarbon receptor (AhR). Although polycyclic aromatic hydrocarbons (PAHs) and their derivatives also activate AhR, their toxic effects remain to be fully elucidated. In the present study, we used the in vitro H4IIE-luc transactivation cell assay to investigate cytotoxicity and potencies to activate AhR by 29 individual PAHs and their N-heterocyclic derivatives (aza-PAHs). The aza-PAHs were found to be significantly more cytotoxic and more potent inducers of AhR than their unsubstituted analogues. Several aza-PAHs, such as dibenz[a,h]acridine or dibenz[a,i]acridine, activated AhR within picomolar concentrations, comparable to the effects of reference 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ellipsoidal volume, molar refractivity, and molecular size were the most important descriptors derived from the modeling of quantitative structure-activity relationships for potencies to activate AhR. Comparable relative toxic potencies (induction equivalency factors) for individual aza-PAHs are derived, and their use for evaluation of complex contaminated samples is discussed.
- MeSH
- biotest MeSH
- heterocyklické sloučeniny chemie toxicita MeSH
- hydrofobní a hydrofilní interakce MeSH
- krysa rodu Rattus MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- polycyklické aromatické uhlovodíky chemie toxicita MeSH
- receptory aromatických uhlovodíků genetika metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterocyklické sloučeniny MeSH
- polycyklické aromatické uhlovodíky MeSH
- receptory aromatických uhlovodíků MeSH
Transdermal drug delivery offers numerous advantages over conventional routes of administration; however, poor permeation of most drugs across the skin barrier constitutes a serious limitation of this methodology. One of the approaches used to enlarge the number of transdermally-applicable drugs uses permeation enhancers. These compounds promote drug permeation through the skin by a reversible decrease of the barrier resistance. Enhancers can act on the stratum corneum intracellular keratin, influence desmosomes, modify the intercellular lipid domains or alter the solvent nature of the stratum corneum. Even though, hundreds of substances have been identified as permeation enhancers to date, yet our understanding of the structure-activity relationships is limited. In general, enhancers can be divided into two large groups: small polar solvents, e.g. ethanol, propylene glycol, dimethylsulfoxide and amphiphilic compounds containing a polar head and a hydrophobic chain, e.g. fatty acids and alcohols, 1-dodecylazepan-2-one (Azone), 2-nonyl-1,3-dioxolane (SEPA 009), and dodecyl-2-dimethylaminopropanoate (DDAIP). In this review we have focused on structure-activity relationships of amphiphilic permeation enhancers, including the properties of the hydrophobic chains, e.g. length, unsaturation, and branching, as well as the polar heads characteristics, e.g. hydrogen bonding ability, lipophilicity, and size. We present over 180 examples of enhancers with different polar head to illustrate the structural requirements and the possible role of the polar head. We have given an overview of the methods used for investigation of the mechanisms of permeation enhancement, namely differential scanning calorimetry (DSC), infrared (IR) and Raman spectroscopy, X-ray diffraction and future perspectives in this field. Furthermore, biodegradability and chirality of the enhancers are discussed.
- MeSH
- absorpce účinky léků MeSH
- aplikace kožní MeSH
- ceramidy aplikace a dávkování chemie MeSH
- farmaceutická chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- keratiny metabolismus MeSH
- kůže účinky léků metabolismus MeSH
- lékové transportní systémy * MeSH
- lidé MeSH
- lipidy chemie MeSH
- permeabilita účinky léků MeSH
- rozpouštědla chemie MeSH
- vodíková vazba MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ceramidy MeSH
- keratiny MeSH
- lipidy MeSH
- rozpouštědla MeSH
Eight 4-quinazolylthiosemicarbazides and nine of their structural analogues have been tested for antibacterial effects and for structure activity relationships. 9-Chloro-5-morpholino-1,2,4-triazolo[4,3-c]quinazoline-3-thione has demonstrated the highest antibacterial effect (MIC of 1 mg/L for E. coli and P. mirabilis and < 1 mg/L for S. aureus and B. subtilis). The most effective derivatives have the carbon aromatic ring substituted with chlorine and the pyrimidine ring with morpholine or with secondary amine group.
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- semikarbazidy chemická syntéza chemie farmakologie MeSH
- triazoly chemická syntéza chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- semikarbazidy MeSH
- triazoly MeSH
Ceramides are a complex group of lipids that has gained much attention as cell signaling molecules and skin barrier constituents. In the skin, these sphingolipids form a major part of the stratum corneum intercellular lipid matrix, which is the barrier for penetration of most compounds. The development of such a protective layer was a critical step in the evolution of life on a dry land. Moreover, prominent skin diseases such as psoriasis and atopic dermatitis are associated with diminished ceramide levels and may be effectively improved by exogenous ceramides or their analogues. Since ceramides are not obtained from natural sources in pure form, they are of synthetic interest since 1950's. In this review, we describe sphingosine syntheses from 1998 until 2008, and the synthetic approaches to the unique epidermal ceramides, including the 6-hydroxysphingosine-based ones, the alpha- and omega-hydroxy forms and the omega-acyloxy species. Moreover, the structural requirements of ceramides for a competent skin barrier are discussed, including acyl chain length, trans double bond, acyl alpha-hydroxyl, stereochemistry, omega-linoleyloxy species and ceramide conformation.
- MeSH
- ceramidy chemická syntéza chemie fyziologie MeSH
- epidermis chemie MeSH
- kožní nemoci metabolismus MeSH
- lidé MeSH
- sfingolipidy chemie MeSH
- sfingosin analogy a deriváty chemická syntéza chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- 6-hydroxy-4-sphingenine MeSH Prohlížeč
- ceramidy MeSH
- sfingolipidy MeSH
- sfingosin MeSH
Binding of fatty acids to cryptogein, the proteinaceous elicitor from Phytophthora, was studied by using molecular docking and quantitative structure-activity relationships analysis. Fatty acids bind to the groove located inside the cavity of cryptogein. The structure-activity model was constructed for the set of 27 different saturated and unsaturated fatty acids explaining 87% (81% cross-validated) of the quantitative variance in their binding affinity. The difference in binding between saturated and unsaturated fatty acids was described in the model by three electronic descriptors: the energy of the lowest unoccupied molecular orbital, the energy of the highest occupied molecular orbital, and the heat of formation. The presence of double bonds in the ligand generally resulted in stronger binding. The difference in binding within the group of saturated fatty acids was explained by two steric descriptors, i.e., ellipsoidal volume and inertia moment of length, and one hydrophobicity descriptor, i.e., lipophility. The developed model predicted strong binding for two biologically important molecules, geranylgeranyol and farnesol playing an important role in plant signaling as lipid anchors of some membrane proteins. Elicitin mutants selectively binding only one type of ligand were designed for future experimental studies.
- MeSH
- bílkoviny řas chemie MeSH
- fungální proteiny MeSH
- konformace proteinů MeSH
- kvantitativní vztahy mezi strukturou a aktivitou * MeSH
- ligandy MeSH
- mastné kyseliny chemie MeSH
- mutace MeSH
- substituce aminokyselin MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bílkoviny řas MeSH
- cryptogein protein, Phytophthora cryptogea MeSH Prohlížeč
- fungální proteiny MeSH
- ligandy MeSH
- mastné kyseliny MeSH