subtelomere structure Dotaz Zobrazit nápovědu
Telomere-associated regions represent boundaries between the relatively homogeneous telomeres and the subtelomeres, which show much greater heterogeneity in chromatin structure and DNA composition. Although a major fraction of subtelomeres is usually formed by a limited number of highly repeated DNA sequence families, their mutual arrangement, attachment to telomeres and the presence of interspersed unique or low-copy-number sequences make these terminal domains chromosome specific. In this study, we describe the structures of junctions between telomeres and a major subtelomeric repeat of the plant Silene latifolia, X43.1. Our results show that on individual chromosome arms, X43.1 is attached to the telomere either directly at sites corresponding to nucleosome boundaries previously mapped in this sequence, or via other spacer sequences, both previously characterized and newly described ones. Sites of telomere junctions are non-random in all the telomere-associated sequences analysed. These data obtained at the molecular level have been verified using in situ hybridization to metaphase chromosomes and extended DNA fibres.
- MeSH
- chromatin chemie genetika MeSH
- chromozom X MeSH
- chromozomy rostlin MeSH
- DNA rostlinná genetika MeSH
- genetická variace MeSH
- hybridizace in situ fluorescenční MeSH
- koncové repetice genetika MeSH
- molekulární sekvence - údaje MeSH
- nukleozomy chemie genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- Silene genetika MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- DNA rostlinná MeSH
- nukleozomy MeSH
Viruses are the most abundant biological entities in the world's oceans, where they play important ecological and biogeochemical roles. Metagenomics is revealing new groups of eukaryotic viruses, although disconnected from known hosts. Among these are the recently described mirusviruses, which share some similarities with herpesviruses.1 50 years ago, "herpes-type" viral particles2 were found in a thraustochytrid member of the labyrinthulomycetes, a diverse group of abundant and ecologically important marine eukaryotes,3,4 but could not be further characterized by methods then available. Long-read sequencing has allowed us to connect the biology of mirusviruses and thraustochytrids. We sequenced the genome of the genetically tractable model thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381 and found that its 26 linear chromosomes have an extraordinary configuration. Subtelomeric ribosomal DNAs (rDNAs) found at all chromosome ends are interspersed with long repeated sequence elements denoted as long repeated-telomere and rDNA spacers (LORE-TEARS). We identified two genomic elements that are related to mirusvirus genomes. The first is a ∼300-kbp episome (circular element 1 [CE1]) present at a high copy number. Strikingly, the second, distinct, mirusvirus-like element is integrated between two sets of rDNAs and LORE-TEARS at the left end of chromosome 15 (LE-Chr15). Similar to metagenomically derived mirusviruses, these putative A. limacinum mirusviruses have a virion module related to that of herpesviruses along with an informational module related to nucleocytoplasmic large DNA viruses (NCLDVs). CE1 and LE-Chr15 bear striking similarities to episomal and endogenous latent forms of herpesviruses, respectively, and open new avenues of research into marine virus-host interactions.
- Klíčová slova
- LORE-TEARS, duplodnaviria, endogenous viruses, host-virus co-evolution, labyrinthulomycetes, long repeated-telomere and rDNA spacers, protist genome assembly, subtelomeric rDNAs, thraustochytrids, varidnaviria, viral episome,
- MeSH
- Eukaryota MeSH
- fylogeneze MeSH
- genom MeSH
- heterochromatin MeSH
- ribozomální DNA MeSH
- telomery MeSH
- viry * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- heterochromatin MeSH
- ribozomální DNA MeSH
The manner of packing of the terminal DNA loci into nucleosomes and higher order structures may strongly influence their functional interactions. Besides the structural flexibility of telomeric DNA sequences, conserved features of their chromatin including short nucleosome phasing (157 bp) and nucleosome sliding have been described previously. To gain a complementary knowledge of subtelomeres, we have analysed the chromatin structure of two subtelomeric tandem repeats from the plant Silene latifolia: X43.1 and 15Ssp. X43.1 shows two distinct nucleosome periodicities--157 and 188 bp. Preferred positions of its two nucleosomes have been mapped at both low and high resolution and the experimental results correspond to computer-predicted positions. 15Ssp is a newly-discovered sequence showing a telomere-associated position by PCR and a subtelomeric location by pulsed-field gel electrophoresis and fluorescence in situ hybridisation. Its 159 bp sequence unit shows a tandem arrangement and the presence of micrococcal nuclease-hypersensitive sites when either naked DNA or chromatin is digested. Use of a chemical nuclease results in a regular nucleosome ladder of 157 bp periodicity. Moreover, 15Ssp mononucleosomes show instability and absence of specific positioning, features typical for telomeric chromatin.
- MeSH
- DNA rostlinná chemie genetika metabolismus MeSH
- genetické matrice MeSH
- heterochromatin chemie genetika metabolismus MeSH
- hybridizace in situ fluorescenční MeSH
- konformace nukleové kyseliny * MeSH
- Magnoliopsida genetika MeSH
- mikrokoková nukleasa metabolismus MeSH
- molekulární sekvence - údaje MeSH
- nukleozomy chemie genetika metabolismus MeSH
- restrikční mapování MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Southernův blotting MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- heterochromatin MeSH
- mikrokoková nukleasa MeSH
- nukleozomy MeSH
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel's anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel's early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
- Klíčová slova
- FISH, NGS, TRAP, eukaryotic tree of life, interstitial telomere sequences, retroelements, satellite, subtelomere structure, telomerase RNA, telomere evolution,
- MeSH
- DNA MeSH
- lidé MeSH
- repetitivní sekvence nukleových kyselin MeSH
- satelitní DNA * MeSH
- sekvence nukleotidů MeSH
- telomery * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- satelitní DNA * MeSH
We have examined the structure and chromatin organization of telomeres in Nicotiana tabacum. In tobacco the blocks of simple telomeric repeats (TT-TAGGG)n are many times larger than in other plants, e.g., Arabidopsis thaliana or tomato. They are resolved as multiple fragments 60-160 kb in size (in most cases 90-130 kb) on pulsed-field gel electrophoresis (PFGE) of restriction endonuclease-digested DNA. The major subtelomeric repeat of the HRS60 family forms large homogeneous blocks of a basic 180 bp motif having comparable lengths. Micrococcal nuclease (MNase) cleaves tobacco telomeric chromatin into subunits with a short repeat length of 157 +/- 5 bp; the subtelomeric heterochromatin characterized by tandemly repeated sequences of the HRS60 family is cut by MNase with a 180 bp periodicity. The monomeric and dimeric particles of telomeric and subtelomeric chromatin differ in sensitivity to MNase treatment: the telomeric particles are readily digested, producing ladders with a periodicity of 7 bp, while the subtelomeric particles appear to be rather resistant to intranucleosomal cleavage. The results presented show apparent similarities in the organization of telomeric chromatin in higher plants and mammals.
Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.
- MeSH
- hybridizace in situ fluorescenční MeSH
- jedlá semena genetika MeSH
- metabolické sítě a dráhy genetika MeSH
- molekulární evoluce MeSH
- multigenová rodina MeSH
- odolnost vůči nemocem genetika MeSH
- oves genetika metabolismus MeSH
- repetitivní sekvence nukleových kyselin MeSH
- saponiny biosyntéza chemie genetika MeSH
- sekvenování celého genomu MeSH
- sekvenování transkriptomu MeSH
- syntenie genetika MeSH
- tabák metabolismus MeSH
- telomery genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- avenacin A 1 MeSH Prohlížeč
- saponiny MeSH
Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
• Allopolyploidy, a driving force in plant evolution, can induce rapid structural changes in parental subgenomes. Here, we examined the fate of homologous subtelomeric satellites in intrasection allotetraploid Nicotiana arentsii formed from N. undulata and N. wigandioides progenitors < 200,000 yr ago. • We cloned and sequenced a number of monomers from progenitors and the allotetraploid. Structural features of both cloned and genomic monomers were studied using double-strand conformation polymorphism analysis. • Two homologous satellites were isolated from N. undulata (called NUNSSP) and N. wigandioides (NWISSP). While the NUNSSP monomers were highly homogeneous in nucleotide sequences, the NWISSP monomers formed two separate clades. Likewise, the genomic NUNSSP monomers showed less DNA conformation heterogeneity than NWISSP monomers, with distinct conformations. While both satellites predominantly occupy subtelomeric positions, a fraction of the NWISSP repeats was found in an intercalary location, supporting the hypothesis that dispersion prevents the repeats becoming homogeneous. Sequence, structural and chromosomal features of the parental satellites were faithfully inherited by N. arentsii. • Our study revealed that intergenomic homogenization of subtelomeric satellite repeats does not occur in N. arentsii allotetraploid. We propose that the sequence and structural divergence of subtelomeric satellites may render allopolyploid chromosomes less vulnerable to intergenomic exchanges.
- MeSH
- chromozomy rostlin genetika MeSH
- diploidie MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- karyotypizace MeSH
- konformace nukleové kyseliny * MeSH
- molekulární sekvence - údaje MeSH
- polymorfismus genetický * MeSH
- polyploidie * MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- satelitní DNA genetika izolace a purifikace MeSH
- sekvenční analýza DNA metody MeSH
- Southernův blotting MeSH
- tabák genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- satelitní DNA MeSH
This paper reports on the structural rearrangement of satellite DNA type I repeats and heterochromatin during the dedifferentiation and cell cycling of mesophyll protoplasts of cucumber (Cucumis sativus). These repeats were localized in the telomeric heterochromatin of cucumber chromosomes and in the chromocenters of interphase nuclei. The dramatic reduction of heterochromatin involves decondensation of subtelomeric repeats in freshly isolated protoplasts; however, there are not a great many remarkable changes in the expression profile. In spite of that, reformation of the chromocenters, occurring 48 h after protoplast isolation, is accompanied by recondensation of satellite DNA type I; however, only partial reassembly of these repeats was revealed. In this study, FISH and a flow cytometry assay show a correlation between the partial chromocenter and the repeats reassembly, and with the reentry of cultivated protoplasts into the cell cycle and first cell division. After that, divided cells displayed a higher variability in the expression profile than did leaves' mesophyll cells and protoplasts.
- MeSH
- buněčná diferenciace MeSH
- centromera genetika MeSH
- chromatin genetika metabolismus MeSH
- chromozomy rostlin genetika MeSH
- Cucumis sativus cytologie genetika MeSH
- DNA rostlinná MeSH
- genom rostlinný MeSH
- hybridizace in situ fluorescenční MeSH
- protoplasty cytologie MeSH
- průtoková cytometrie MeSH
- separace buněk MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- DNA rostlinná MeSH
FISH is a useful method to identify individual chromosomes in a karyotype and to discover their structural changes accompanying genome evolution and speciation. DNA probes for FISH should be chromosome specific and/or exhibit specific patterns of distribution along each chromosome. Such probes are not available in many plants including meadow fescue (Festuca pratensis Huds.), an important forage grass species. In the present study, various DNA repeats identified in Illumina shotgun sequences specific to chromosome 4F of F. pratensis were used as probes for FISH to develop the molecular karyotype of meadow fescue and to reveal a long-range molecular organization of its chromosomes. Five tandem repeats produced specific patterns on individual chromosomes. Their use in combination with probes for rRNA genes enabled the establishment of the molecular karyotype of meadow fescue. Most of the mobile genetic elements were dispersed along all the chromosomes except for the DNA transposon CACTA, which was localized preferentially to telomeric and subtelomeric regions, and a putative LTR element, which was localized to (peri)centromeric regions. Cytogenetic mapping of the 5 tandem repeats in other accessions of meadow fescue showed a highly similar distribution and confirmed the versatility and robustness of these probes.
- Klíčová slova
- Fluorescence in situ hybridization, Karyotyping, Meadow fescue, Repetitive DNA, Tandem organized repeats,
- MeSH
- chromozomy rostlin MeSH
- DNA rostlinná MeSH
- Festuca genetika MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- karyotypizace metody MeSH
- tandemové repetitivní sekvence * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA rostlinná MeSH