task-related network visualization Dotaz Zobrazit nápovědu
Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e., absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind visualization of task-related neural networks. Two (spatio)spectral patterns (high δ 4 band and low β 1 band) demonstrated significant negative linear relationship (p FWE < 0.05) to the frequent stimulus and three patterns (two low δ 2 and δ 3 bands, and narrow θ 1 band) demonstrated significant positive relationship (p < 0.05) to the target stimulus. These patterns were identified as ERSPats. EEG-fMRI F-map of each δ 4 model showed strong engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified the relationship to the frequent stimulus. For the δ 4 model, we detected a reduced HRF peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN, default mode network (DMN) and in the frontal white matter. The frequent-related β 1 patterns visualized less significant and distinct suprathreshold spatial associations. Each θ 1 model showed strong involvement of lateralized left-sided sensory-motor and motor networks with simultaneous basal ganglia co-activations and reduced HRF peak and amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ 1 model preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ 4, β 1, and θ 1 bands, all models provided high local F-statistics in expected regions. The most robust EEG-fMRI associations were observed for ASM and RSSM.
OBJECTIVE: We investigated cognitive task-related functional connectivity (FC) in patients with temporal lobe epilepsy (TLE). Using a visual three-stimulus paradigm (VTSP), we studied cognitive large-scale networks and the impact of TLE on connectivity outside the temporal lobe. METHODS: High-density electroencephalography (EEG) was recorded during the paradigm from nineteen patients with epilepsy with hippocampal sclerosis (HS) and ten healthy controls (HCs). Scalp data were reconstructed into the source space, and FC was computed. Correlating with the neuropsychological data, possible compensatory mechanisms were investigated. RESULTS: Significant changes were found in the FC of regions outside the epileptogenic network, particularly in the attentional network. These changes were more widespread in left TLE (LTLE). There were no significant differences in task performance (accuracy, time response) in comparison with HCs, implying that there must be some mechanism reducing the impact of connectivity changes on brain functions. When correlated with neuropsychological data, we found stronger compensatory mechanisms in right TLE (RTLE). SIGNIFICANCE: Our findings confirm the hypothesis that LTLE is the more pervasive form of the disease. Even though the network alterations in TLE are severe, some mechanisms reduce the impact of epilepsy on cognitive functions; these mechanisms are more potent in RTLE. We also suggest that there are maladaptive mechanisms in LTLE.
- Klíčová slova
- Cognitive network, Functional connectivity, High-density EEG, Temporal lobe epilepsy,
- MeSH
- epilepsie temporálního laloku * komplikace MeSH
- funkční lateralita MeSH
- kognice MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Changes in connectivity of the posterior node of the default mode network (DMN) were studied when switching from baseline to a cognitive task using functional magnetic resonance imaging. In all, 15 patients with mild to moderate Alzheimer's disease (AD) and 18 age-, gender-, and education-matched healthy controls (HC) participated in the study. Psychophysiological interactions analysis was used to assess the specific alterations in the DMN connectivity (deactivation-based) due to psychological effects from the complex visual scene encoding task. In HC, we observed task-induced connectivity decreases between the posterior cingulate and middle temporal and occipital visual cortices. These findings imply successful involvement of the ventral visual pathway during the visual processing in our HC cohort. In AD, involvement of the areas engaged in the ventral visual pathway was observed only in a small volume of the right middle temporal gyrus. Additional connectivity changes (decreases) in AD were present between the posterior cingulate and superior temporal gyrus when switching from baseline to task condition. These changes are probably related to both disturbed visual processing and the DMN connectivity in AD and reflect deficits and compensatory mechanisms within the large scale brain networks in this patient population. Studying the DMN connectivity using psychophysiological interactions analysis may provide a sensitive tool for exploring early changes in AD and their dynamics during the disease progression.
- Klíčová slova
- Alzheimer's disease, default mode network, functional MRI, posterior cingulate, visual processing,
- MeSH
- Alzheimerova nemoc patologie MeSH
- kyslík krev MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku * MeSH
- mozek krevní zásobení patofyziologie MeSH
- nervová síť krevní zásobení patologie MeSH
- neuropsychologické testy MeSH
- počítačové zpracování obrazu MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- zrakové dráhy krevní zásobení patofyziologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyslík MeSH
Spatiotemporal dynamics of event-related potentials (ERP) evoked by non-target stimuli in a visual oddball experiment and the presence of coherent oscillations in beta 2 frequency band of decomposed EEG records from peristimulus period were investigated by means of intracranial electrodes in humans. Twenty-one patients with medically intractable epilepsy participated in the study. The EEG signal was recorded using platinum electrodes implanted in several cortical and subcortical sites. Averaged 2 s EEG records were analyzed. Task-specific EEG changes were found in each patient, ERPs were derived from 92 electrodes used (96 % of possible cases). In the majority of analysed cases, ERPs were composed of several distinct components, and their duration was mostly longer than 1 s. The mean onset of the first ERP component was 158+/-132 ms after the stimulus (median 112 ms, minimum value 42 ms, maximum value 755 ms), and large variability of these onset times was found in all the investigated structures. Possible coherence between neural activities of remote brain sites was investigated by calculating running correlations between pairs of decomposed EEG records (alpha, beta 1, beta 2 frequency bands were used, total number of correlated pairs was 662 in each frequency band). The record pairs exhibiting highly correlated time segments represented 23 % of all the investigated pairs in alpha band, 7 % in beta 1 band, and 59 % in beta 2 band. In investigated 2 s record windows, such segments were distributed evenly, i.e. they were also found before the stimulus onset. In conclusion, the results have implicated the idea that a lot of recorded ERPs was more or less by-products of chance in spreading a signal within the neuronal network, and that their functional relevance was somewhat linked with the phenomenon of activity synchronization.
- MeSH
- beta rytmus EEG * MeSH
- časové faktory MeSH
- dospělí MeSH
- epilepsie patofyziologie psychologie MeSH
- implantované elektrody MeSH
- kognice * MeSH
- korová synchronizace MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování mozku přístrojové vybavení metody MeSH
- mozková kůra patofyziologie MeSH
- nervová síť patofyziologie MeSH
- periodicita MeSH
- světelná stimulace MeSH
- teorie detekce signálu * MeSH
- zraková percepce MeSH
- zrakové dráhy patofyziologie MeSH
- zrakové evokované potenciály MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Disturbances in the default mode network (DMN) have been described in many neurological and psychiatric disorders including Parkinson's disease (PD). The DMN is characterized by basal activity that increases during rest or passive visual fixation and decreases ("deactivates") during cognitive tasks. The network is believed to be involved in cognitive processes. We examined the DMN in PD patients on dopaminergic medication with normal cognitive performance compared to age- and gender-matched healthy controls (HC) using fMRI and three methodological procedures: independent component analysis of resting-state data, analysis of deactivation during a complex visual scene-encoding task, and seed-based functional connectivity analysis. In the PD group, we also studied the effect of dopaminergic medication on the DMN integrity. We did not find any difference between the PD and HC groups in the DMN, but using the daily levodopa equivalent dose as a covariate, we observed an enhanced functional connectivity of the DMN in the posterior cingulate cortex and decreased activation in the left parahippocampal gyrus during the cognitive task. We conclude that dopaminergic therapy has a specific effect on both the DMN integrity and task-related brain activations in cognitively unimpaired PD patients, and these effects seem to be dose-dependent.
- MeSH
- antiparkinsonika terapeutické užití MeSH
- dospělí MeSH
- kognitivní poruchy * farmakoterapie etiologie patologie MeSH
- kyslík krev MeSH
- levodopa terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek krevní zásobení účinky léků MeSH
- neuropsychologické testy MeSH
- Parkinsonova nemoc * komplikace farmakoterapie patologie MeSH
- počítačové zpracování obrazu MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- světelná stimulace MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiparkinsonika MeSH
- kyslík MeSH
- levodopa MeSH
The present functional magnetic resonance imaging (fMRI) study investigated neural correlates of switching between task-processing and periods of rest in a conventional ON-OFF block-design in patients with auditory verbal hallucinations (AVHs) and healthy controls. It has been proposed that auditory hallucinations are a failure of top-down control of bottom-up perceptual processes which could be due to aberrant up- and down regulation of brain networks. A version of the Eriksen Flanker task was used to assess cognitive flexibility and conflict control. BOLD fMRI with alternating blocks of task engagement and rest was collected using a 3T MR scanner. The objective of the study was to explore how patients would dynamically modulate relevant brain networks in response to shifting environmental demands, while transitioning from a resting state to active task-processing. Analysis of performance data found significant behavioral effects between the groups, where AVH patients performed the Flanker task significantly less accurately and with longer reaction times (RTs) than the healthy control group, indicating that AVH patients displayed reduced top-down guided conflict control. A network connectivity analysis of the fMRI data showed that both groups recruited similar networks related to task-present and task-absent conditions. However, the controls displayed increased network variability across task-present and task-absent conditions. This would indicate that the controls were better at switching between networks and conditions when demands changed from task-present to task-absent, with the consequence that they would perform the Flanker task better than the AVH patients.
- MeSH
- dospělí MeSH
- halucinace * patofyziologie diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku metody MeSH
- mladý dospělý MeSH
- mozek * patofyziologie diagnostické zobrazování MeSH
- nervová síť patofyziologie diagnostické zobrazování MeSH
- reakční čas * fyziologie MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: To identify intracerebral sites activated after correct motor response during cognitive task and to assess associations of this activity with mental processes. METHODS: Intracerebral EEG was recorded from 205 sites of frontal, temporal and parietal lobes in 18 epileptic patients, who responded by button pressing together with mental counting to target stimuli in visual oddball task. RESULTS: Post-movement event-related potentials (ERPs) with mean latency 295 ± 184 ms after movement were found in all subjects in 64% of sites investigated. Generators were consistently observed in mesiotemporal structures, anterior midcingulate, prefrontal, and temporal cortices. Task-variant nonspecific and target specific post-movement ERPs were identified, displaying no significant differences in distribution among generating structures. Both after correct and incorrect performances the post-performance ERPs were observed in frontal and temporal cortices with latency sensitive to error commission in several frontal regions. CONCLUSION: Mesiotemporal structures and regions in anterior midcingulate, prefrontal and temporal cortices seem to represent integral parts of network activated after correct motor response in visual oddball task with mental counting. Our results imply equivalent involvement of these structures in task-variant nonspecific and target specific processes, and suggest existence of common nodes for correct and incorrect responses. SIGNIFICANCE: Our results contribute to better understanding of neural mechanisms underlying goal-directed behavior.
- Klíčová slova
- Correct performance, ERP, Error, Intracerebral EEG, Monitoring, Movement,
- MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek fyziologie MeSH
- pohyb fyziologie MeSH
- psychomotorický výkon fyziologie MeSH
- světelná stimulace metody MeSH
- zrakové evokované potenciály fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Visual event-related potentials were simultaneously recorded from different anatomical structures within frontal and temporal lobes in 12 epileptic patients. A simple discrimination task was performed to complement previous studies on the localization of P3 generators in the human brain. The role of multiple cortical structures in the generation of both P3a and P3b components was confirmed. Activities contemporary to a visual P3b were recorded in the hippocampus, amygdala and temporal pole. Anterior cingulate and orbitofrontal cortices-generated activities more closely related in time to the surface P3a. Earlier events related to visual discrimination took place in more lateral sites of the frontal lobe, but their contribution to the scalp P3 remains uncertain. Subsequently, mutual temporal relations among single generators were analyzed. The results suggested a processing-level hierarchy within the neural network for directed attention with a key role played by the dorsolateral prefrontal cortex.
- MeSH
- čelní lalok fyziologie MeSH
- diskriminace (psychologie) fyziologie MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- lidé středního věku MeSH
- lidé MeSH
- spánkový lalok fyziologie MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
PURPOSE: To investigate the fundamental connectivity architecture of neural structures involved in the goal-directed processing of target events. METHODS: Twenty healthy volunteers underwent event-related functional magnetic resonance imaging (fMRI) while performing a standard oddball task. In the task, two types of visual stimuli - rare (target) and frequent - were randomly presented, and subjects were instructed to mentally count the target stimuli. Dynamic causal modeling (DCM), in combination with Bayes factors was used to compare competing neurophysiological models with different intrinsic connectivity structures and input regions within the network of brain regions underlying target stimulus processing. RESULTS: Conventional analysis of fMRI data revealed significantly greater activation in response to the target stimuli (in comparison to the frequent stimuli) in several brain regions, including the intraparietal sulci and supramarginal gyri, the anterior and posterior cingulate gyri, the inferior and middle frontal gyri, the superior temporal sulcus, the precuneus/cuneus, and the subcortical grey matter (caudate and thalamus). The most extensive cortical activations were found in the right intraparietal sulcus (IPS), the anterior cingulate cortex (ACC), and the right lateral prefrontal cortex (PFC). These three regions were entered into the DCM. A comparison on a group level revealed that the dynamic causal models in which the ACC and alternatively the IPS served as input regions were superior to a model in which the PFC was assumed to receive external inputs. No significant difference was observed between the fully connected models with ACC and IPS as input regions. Subsequent analysis of the intrinsic connectivity within two investigated models (IPS and ACC) disclosed significant parallel forward connections from the IPS to the frontal areas and from the ACC to the PFC and the IPS. CONCLUSION: Our findings indicate that during target stimulus processing there is a bidirectional frontoparietal information flow, very likely reflecting parallel activation of two distinct but partially overlapping attentional or attentional/event-encoding neural systems. Additionally, a simple hierarchy within the right frontal lobe is suggested with the ACC exerting influence over the PFC.
- MeSH
- dospělí MeSH
- duševní procesy fyziologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mladiství MeSH
- mozek fyziologie MeSH
- světelná stimulace MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: This study concerned sensory processing (post-stimulus late evoked potential components) in different parts of the human brain as related to a motor task (hand movement) in a cognitive paradigm (Contingent Negative Variation). The focus of the study was on the time and space distribution of middle and late post-stimulus evoked potential (EP) components, and on the processing of sensory information in the subcortical-cortical networks. METHODS: Stereoelectroencephalography (SEEG) recordings of the contingent negative variation (CNV) in an audio-visual paradigm with a motor task were taken from 30 patients (27 patients with drug-resistant epilepsy; 3 patients with chronic thalamic pain). The intracerebral recordings were taken from 337 cortical sites (primary sensorimotor area (SM1); supplementary motor area (SMA); the cingulate gyrus; the orbitofrontal, premotor and dorsolateral prefrontal cortices; the temporal cortex, including the amygdalohippocampal complex; the parietooccipital lobes; and the insula) and from subcortical structures (the basal ganglia and the posterior thalamus). The concurrent scalp recordings were obtained from 3 patients in the thalamic group. In 4 patients in the epilepsy group, scalp recordings were taken separately from the SEEG procedure. The middle and long latency evoked potentials following an auditory warning (S1) and a visual imperative (S2) stimuli were analyzed. The occurrences of EPs were studied in two time windows (200-300 ms; and over 300 ms) following S1 and S2. RESULTS: Following S1, a high frequency of EP with latencies over 200 ms was observed in the primary sensorimotor area, the supplementary motor area, the premotor cortex, the orbitofrontal cortex, the cingulate gyrus, some parts of the temporal lobe, the basal ganglia, the insula, and the posterior thalamus. Following S2, a high frequency of EP in both of the time windows over 200 ms was observed in the SM1, the SMA, the premotor and dorsolateral prefrontal cortex, the orbitofrontal cortex, the cingulate gyrus, the basal ganglia, the posterior thalamus, and in some parts of the temporal cortex. The concurrent scalp recordings in the thalamic group of patients twice revealed potentials peaking approximately at 215 ms following S1. Following S2, EP occurred with latencies of 215 and 310 ms, respectively. Following S1, separate scalp recordings in 4 patients in the epilepsy group displayed EP 3 times in the 'over 300 ms' time window. Following S2, EP were presented once in the '200-300 ms' time window and 3 times in the 'over 300 ms' time window. CONCLUSIONS: The SM1, the SMA, multiple sites of the frontal lobe, some parts of the temporal lobe, the cingulate gyrus, the basal ganglia, the insula, and the posterior thalamus all participate in a cortico-subcortical network that is important for the parallel cognitive processing of sensory information in a movement related task.
- MeSH
- bazální ganglia fyziologie MeSH
- bolest patofyziologie MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- epilepsie parciální patofyziologie MeSH
- kontingentní negativní variace fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mozková kůra fyziologie MeSH
- pohybová aktivita MeSH
- reakční čas fyziologie MeSH
- skalp MeSH
- sluchové evokované potenciály fyziologie MeSH
- thalamus fyziologie MeSH
- zrakové evokované potenciály fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH