visualization Dotaz Zobrazit nápovědu
We provide a high-level survey of multiscale molecular visualization techniques, with a focus on application-domain questions, challenges, and tasks. We provide a general introduction to molecular visualization basics and describe a number of domain-specific tasks that drive this work. These tasks, in turn, serve as the general structure of the following survey. First, we discuss methods that support the visual analysis of molecular dynamics simulations. We discuss, in particular, visual abstraction and temporal aggregation. In the second part, we survey multiscale approaches that support the design, analysis, and manipulation of DNA nanostructures and related concepts for abstraction, scale transition, scale-dependent modeling, and navigation of the resulting abstraction spaces. In the third part of the survey, we showcase approaches that support interactive exploration within large structural biology assemblies up to the size of bacterial cells. We describe fundamental rendering techniques as well as approaches for element instantiation, visibility management, visual guidance, camera control, and support of depth perception. We close the survey with a brief listing of important tools that implement many of the discussed approaches and a conclusion that provides some research challenges in the field.
- Klíčová slova
- DNA nanotechnology, modelitics, molecular dynamics, molecular visualization, visual abstraction,
- MeSH
- Bacteria MeSH
- DNA ultrastruktura MeSH
- lidé MeSH
- molekulární modely MeSH
- nanostruktury * MeSH
- proteiny chemie MeSH
- simulace molekulární dynamiky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- proteiny MeSH
Visualization analysis plays an important role in metagenomics research. Proper and clear visualization can help researchers get their first insights into data and by selecting different features, also revealing and highlighting hidden relationships and drawing conclusions. To prevent the resulting presentations from becoming chaotic, visualization techniques have to properly tackle the high dimensionality of microbiome data. Although a number of different methods based on dimensionality reduction, correlations, Venn diagrams, and network representations have already been published, there is still room for further improvement, especially in the techniques that allow visual comparison of several environments or developmental stages in one environment. In this article, we represent microbiome data by bipartite graphs, where one partition stands for taxa and the other stands for samples. We demonstrated that community detection is independent of taxonomical level. Moreover, focusing on higher taxonomical levels and the appropriate merging of samples greatly helps improving graph organization and makes our presentations clearer than other graph and network visualizations. Capturing labels in the vertices also brings the possibility of clearly comparing two or more microbial communities by showing their common and unique parts.
- Klíčová slova
- 16S rRNA, OTU table, bipartite graph, graph modularity, metagenomics, visualization analysis,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Visualization of large molecular datasets is a challenging yet important topic utilised in diverse fields of chemistry ranging from material engineering to drug design. Especially in drug design, modern methods of high-throughput screening generate large amounts of molecular data that call for methods enabling their analysis. One such method is classification of compounds based on their molecular scaffolds, a concept widely used by medicinal chemists to group molecules of similar properties. This classification can then be utilized for intuitive visualization of compounds. RESULTS: In this paper, we propose a scaffold hierarchy as a result of large-scale analysis of the PubChem Compound database. The analysis not only provided insights into scaffold diversity of the PubChem Compound database, but also enables scaffold-based hierarchical visualization of user compound data sets on the background of empirical chemical space, as defined by the PubChem data, or on the background of any other user-defined data set. The visualization is performed by a web based client-server application called Scaffvis. It provides an interactive zoomable tree map visualization of data sets up to hundreds of thousands molecules. Scaffvis is free to use and its source codes have been published under an open source license.Graphical abstract.
- Klíčová slova
- Chemical space, Pubchem, Scaffold, Treemap, Visualization,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Protein function is determined by many factors, namely by its constitution, spatial arrangement, and dynamic behavior. Studying these factors helps the biochemists and biologists to better understand the protein behavior and to design proteins with modified properties. One of the most common approaches to these studies is to compare the protein structure with other molecules and to reveal similarities and differences in their polypeptide chains. RESULTS: We support the comparison process by proposing a new visualization technique that bridges the gap between traditionally used 1D and 3D representations. By introducing the information about mutual positions of protein chains into the 1D sequential representation the users are able to observe the spatial differences between the proteins without any occlusion commonly present in 3D view. Our representation is designed to serve namely for comparison of multiple proteins or a set of time steps of molecular dynamics simulation. CONCLUSIONS: The novel representation is demonstrated on two usage scenarios. The first scenario aims to compare a set of proteins from the family of cytochromes P450 where the position of the secondary structures has a significant impact on the substrate channeling. The second scenario focuses on the protein flexibility when by comparing a set of time steps our representation helps to reveal the most dynamically changing parts of the protein chain.
- Klíčová slova
- Molecular sequence analysis, Molecular structure and function, Molecular visualization,
- MeSH
- algoritmy MeSH
- molekulární modely MeSH
- proteiny chemie MeSH
- sekundární struktura proteinů * MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny MeSH
Species-specific sets of chromosomes-karyotypes-are traditionally depicted as linear ideograms with individual chromosomes represented by vertical bars. However, linear visualization has its limitations when the shared collinearity and/or chromosomal rearrangements differentiating two or more karyotypes need to be demonstrated. In these instances, circular visualization might provide easier comprehension and interpretation of inter-species chromosomal collinearity. The chromDraw graphical tool was developed as a user-friendly graphical tool for visualizing both linear and circular karyotypes based on the same input data matrix. The output graphics, saved in two different formats (EPS and SVG), can be easily imported to and modified in presentation and image-editing computer programs. The tool is freely distributed under GNU General Public License (GPL) and can be installed from Bioconductor or from the chromDraw home page.
- Klíčová slova
- Chromosome, Karyotype, R, Visualization,
- MeSH
- chromozomální aberace MeSH
- chromozomy * MeSH
- karyotyp * MeSH
- karyotypizace * MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biomacromolecular structural data make up a vital and crucial scientific resource that has grown not only in terms of its amount but also in its size and complexity. Furthermore, these data are accompanied by large and increasing amounts of experimental data. Additionally, the macromolecular data are enriched with value-added annotations describing their biological, physicochemical and structural properties. Today, the scientific community requires fast and fully interactive web visualization to exploit this complex structural information. This article provides a survey of the available cutting-edge web services that address this challenge. Specifically, it focuses on data-delivery problems, discusses the visualization of a single structure, including experimental data and annotations, and concludes with a focus on the results of molecular-dynamics simulations and the visualization of structural ensembles.
- Klíčová slova
- browser-based, data delivery, macromolecules, visualization, web-based,
- MeSH
- internet * MeSH
- makromolekulární látky chemie MeSH
- počítačová grafika * MeSH
- software * MeSH
- uživatelské rozhraní počítače * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- makromolekulární látky MeSH
BACKGROUND: Visualization of RNA secondary structures is a complex task, and, especially in the case of large RNA structures where the expected layout is largely habitual, the existing visualization tools often fail to produce suitable visualizations. This led us to the idea to use existing layouts as templates for the visualization of new RNAs similarly to how templates are used in homology-based structure prediction. RESULTS: This article introduces Traveler, a software tool enabling visualization of a target RNA secondary structure using an existing layout of a sufficiently similar RNA structure as a template. Traveler is based on an algorithm which converts the target and template structures into corresponding tree representations and utilizes tree edit distance coupled with layout modification operations to transform the template layout into the target one. Traveler thus accepts a pair of secondary structures and a template layout and outputs a layout for the target structure. CONCLUSIONS: Traveler is a command-line open source tool able to quickly generate layouts for even the largest RNA structures in the presence of a sufficiently similar layout. It is available at http://github.com/davidhoksza/traveler .
- Klíčová slova
- RNA secondary structure, Software tool, Template-based modeling, Visualization,
- MeSH
- algoritmy MeSH
- konformace nukleové kyseliny MeSH
- RNA chemie MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA MeSH
This study is focused on the visualization of latent fingerprints on brass surfaces using the method of electrochemical deposition of a polymer film based on poly(neutral red) (PNR). The experiment included (i) optimization of conditions of electrochemical deposition of PNR on brass surfaces, (ii) ATR-FTIR spectroscopic characterization of PNR-modified substrates, and (iii) identification of characteristic details on visualized fingerprints on fired brass cartridges. For electrochemical visualization, it is necessary to keep in mind both kind and "story" substrates. Experimental findings showed that electrochemical visualization carried out on brass plates is a step forward before known findings described in the literature and gives simultaneously a new approach for criminalists in the fight against crime.
- Klíčová slova
- brass cartridge, electrochemical deposition, latent fingerprints, poly(neutral red), visualization,
- Publikační typ
- časopisecké články MeSH
LiteMol suite is an innovative solution that enables near-instant delivery of model and experimental biomacromolecular structural data, providing users with an interactive and responsive experience in all modern web browsers and mobile devices. LiteMol suite is a combination of data delivery services (CoordinateServer and DensityServer), compression format (BinaryCIF), and a molecular viewer (LiteMol Viewer). The LiteMol suite is integrated into Protein Data Bank in Europe (PDBe) and other life science web applications (e.g., UniProt, Ensemble, SIB, and CNRS services), it is freely available at https://litemol.org , and its source code is available via GitHub. LiteMol suite provides advanced functionality (annotations and their visualization, powerful selection features), and this chapter will describe their use for visual inspection of protein structures.
- Klíčová slova
- Atom selection, Electron density, Ligand representation, Protein visualization, Validation report,
- MeSH
- databáze proteinů MeSH
- internet MeSH
- internetový prohlížeč MeSH
- konformace proteinů * MeSH
- proteiny chemie MeSH
- software MeSH
- uživatelské rozhraní počítače MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- proteiny MeSH
Two citations in the article by Sehnal et al. [(2020), Acta Cryst. D76, 1167-1173] are corrected.
- Klíčová slova
- corrigendum, data delivery, macromolecules, visualization,
- Publikační typ
- tisková chyba MeSH