-
Je něco špatně v tomto záznamu ?
K-space trajectory mapping and its application for ultrashort Echo time imaging
P. Latta, Z. Starčuk, ML. Gruwel, MH. Weber, B. Tomanek,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- algoritmy MeSH
- artefakty MeSH
- fantomy radiodiagnostické MeSH
- hlava anatomie a histologie diagnostické zobrazování MeSH
- kalibrace MeSH
- koleno anatomie a histologie diagnostické zobrazování MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- počítačové zpracování obrazu metody MeSH
- teoretické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
MR images are affected by system delays and gradient field imperfections which induce discrepancies between prescribed and actual k-space trajectories. This could be even more critical for non-Cartesian data acquisitions where even a small deviation from the assumed k-space trajectory results in severe image degradation and artifacts. Knowledge of the actual k-space trajectories is therefore crucial and can be incorporated in the reconstruction of high quality non-Cartesian images. A novel MR method for the calibration of actual gradient waveforms was developed using a combination of phase encoding increments and subsequent detection of the exact time point at which the corresponding trajectory is crossing the k-space origin. The measured sets of points were fitted to a parametrical model to calculate the complete actual acquisition trajectory. Measurements performed on phantoms and volunteers, positioned both in- and off-isocenter of the magnet, clearly demonstrate the improvement in reconstructed ultrashort echo time (UTE) images, when information from calibration of k-space sampling trajectories is employed in the MR image reconstruction procedure. The unique feature of the proposed method is its robustness and simple experimental setup, making it suitable for quick acquisition trajectory calibration procedures e.g. for non-Cartesian radial fast imaging.
Central European Institute of Technology Masaryk University Brno Czech Republic
Institute of Scientific Instruments Academy of Sciences of the Czech Republic Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031389
- 003
- CZ-PrNML
- 005
- 20171031110332.0
- 007
- ta
- 008
- 171025s2017 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.mri.2016.10.012 $2 doi
- 035 __
- $a (PubMed)27742433
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Latta, Peter $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic. Electronic address: lattape@gmail.com.
- 245 10
- $a K-space trajectory mapping and its application for ultrashort Echo time imaging / $c P. Latta, Z. Starčuk, ML. Gruwel, MH. Weber, B. Tomanek,
- 520 9_
- $a MR images are affected by system delays and gradient field imperfections which induce discrepancies between prescribed and actual k-space trajectories. This could be even more critical for non-Cartesian data acquisitions where even a small deviation from the assumed k-space trajectory results in severe image degradation and artifacts. Knowledge of the actual k-space trajectories is therefore crucial and can be incorporated in the reconstruction of high quality non-Cartesian images. A novel MR method for the calibration of actual gradient waveforms was developed using a combination of phase encoding increments and subsequent detection of the exact time point at which the corresponding trajectory is crossing the k-space origin. The measured sets of points were fitted to a parametrical model to calculate the complete actual acquisition trajectory. Measurements performed on phantoms and volunteers, positioned both in- and off-isocenter of the magnet, clearly demonstrate the improvement in reconstructed ultrashort echo time (UTE) images, when information from calibration of k-space sampling trajectories is employed in the MR image reconstruction procedure. The unique feature of the proposed method is its robustness and simple experimental setup, making it suitable for quick acquisition trajectory calibration procedures e.g. for non-Cartesian radial fast imaging.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a kalibrace $7 D002138
- 650 _2
- $a hlava $x anatomie a histologie $x diagnostické zobrazování $7 D006257
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a koleno $x anatomie a histologie $x diagnostické zobrazování $7 D007717
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a fantomy radiodiagnostické $7 D019047
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Starčuk, Zenon $u Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
- 700 1_
- $a Gruwel, Marco L H $u Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, Level 4, Lowy Cancer Research Centre, UNSW Australia, Sydney, NSW 2052, Australia.
- 700 1_
- $a Weber, Michael H $u McGill Scoliosis and Spine Centre, McGill University Health Centre, Montreal General Hospital site, A5-169, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
- 700 1_
- $a Tomanek, Boguslaw $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic; University of Alberta, Department of Oncology, Division of Medical Physics, 8303 - 112 Street NW, Edmonton, AB, T6G 2T4, Canada.
- 773 0_
- $w MED00003171 $t Magnetic resonance imaging $x 1873-5894 $g Roč. 36, č. - (2017), s. 68-76
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27742433 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171031110423 $b ABA008
- 999 __
- $a ok $b bmc $g 1254982 $s 992416
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 36 $c - $d 68-76 $e 20161011 $i 1873-5894 $m Magnetic resonance imaging $n Magn Reson Imaging $x MED00003171
- LZP __
- $a Pubmed-20171025