Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database

. 2017 ; 4 (4) : 293-306.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29125504

Grantová podpora
G1002274 Medical Research Council - United Kingdom

BACKGROUND: Recent short-term clinical trials in patients with Duchenne Muscular Dystrophy (DMD) have indicated greater disease variability in terms of progression than expected. In addition, as average life-expectancy increases, reliable data is required on clinical progression in the older DMD population. OBJECTIVE: To determine the effects of corticosteroids on major clinical outcomes of DMD in a large multinational cohort of genetically confirmed DMD patients. METHODS: In this cross-sectional study we analysed clinical data from 5345 genetically confirmed DMD patients from 31 countries held within the TREAT-NMD global DMD database. For analysis patients were categorised by corticosteroid background and further stratified by age. RESULTS: Loss of ambulation in non-steroid treated patients was 10 years and in corticosteroid treated patients 13 years old (p = 0.0001). Corticosteroid treated patients were less likely to need scoliosis surgery (p < 0.001) or ventilatory support (p < 0.001) and there was a mild cardioprotective effect of corticosteroids in the patient population aged 20 years and older (p = 0.0035). Patients with a single deletion of exon 45 showed an increased survival in contrast to other single exon deletions. CONCLUSIONS: This study provides data on clinical outcomes of DMD across many healthcare settings and including a sizeable cohort of older patients. Our data confirm the benefits of corticosteroid treatment on ambulation, need for scoliosis surgery, ventilation and, to a lesser extent, cardiomyopathy. This study underlines the importance of data collection via patient registries and the critical role of multi-centre collaboration in the rare disease field.

1 1 Ogawa Higashi Kodaira Tokyo Japan

Action Duchenne Epicentre London UK

AP HM Hôpital d'Enfants de la Timone Département de Génétique Médicale et de Biologie Cellulaire Marseille France

Center for Gene Therapy The Research Institute Nationwide Children's Hospital Columbus OH USA

Centre for Comparative Genomics Murdoch University Murdoch WA Australia

Centro de Genética Médica Jacinto Magalhães Porto Portugal

China DMD Care and Support Association c o China Dolls Xicheng district China

Clinic for Neurology and Psychiatry for Children and Youth Faculty of Medicine University of Belgrade Belgrade Serbia

Clinic of Neurology University Hospital Sofiamed Sofia Bulgaria

Department of Child Neurology Turku University Central Hospital Turku Finland

Department of Clinical Neurosciences and Hotchkiss Brain Institute University of Calgary South Health Campus Calgary AB Canada

Department of Epidemiology Erasmus University Medical Centre Rotterdam The Netherlands

Department of Medical Genetics Medical School University of Athens Choremio Research Laboratory St Sophia's Children's Hospital Thinon and Levadia Goudi Athens Greece

Department of Neurology Auckland DHB Auckland New Zealand

Department of Neurology Medical University of Warsaw Warsaw Poland

Department of Neurology Medical University Sofia Sofia Bulgaria

Department of Neurology Peking Union Medical College Hospital Peking Union Medical College and Chinese Academy of Medical Sciences Beijing China

Department of Paediatrics and Adolescent Medicine Queen Mary Hospital University of Hong Kong Hong Kong China

Department of Paediatrics Clinical Neurological Sciences and Epidemiology Western University London ON Canada

Department of Reproduction and Growth Department of Medical Sciences OSPFE University of Ferrara Ferrara Italy

Division of Paediatric Neurology University Hospital Centre Zagreb University of Zagreb Medical School Zagreb Croatia

DuchenneConnect Hackensack NJ USA

Friedrich Baur Institute Department of Neurology Ludwig Maximilians University of Munich Munich Germany

Hacettepe University Faculty of Health Sciences Department of Physiotherapy and Rehabilitation Altindağ Ankara Turkey

Hospital de Pediatría J P Garrahan Pichincha Argentina

Institute for Biostatistic and Analyses Masaryk University Brno Czech Republic

Institute of Neurology Psychiatry and Narcology of NAMS Kharkiv Ukraine

Institute of Rare Diseases Research SpainRDR and CIBERER Institute of Health Carlos 3 Madrid Spain

Institute of Social and Preventive Medicine University of Bern Bern Switzerland

John Walton Muscular Dystrophy Research Centre Institute of Genetic Medicine Central Parkway Newcastle upon Tyne UK

Kanchi Kamakoti CHILDS Trust and Apollo Children's Hospitals Chennai India

Leiden University Medical Center Department of Medical Statistics Leiden The Netherlands

Leiden University Medical Center Department of Neurology Leiden The Netherlands

Moscow Institute of Pediatrics Moscow Russia

National Institute of Legal Medicine Mina Minovici Genetics Laboratory Bucharest Romania

Neurology and Neurogenic Unit Egypt Air Hospital Ain Shams University Egypt

NIEH Department of Molecular Genetics and Diagnostics Budapest Hungary

Office of Population Health Genomics Department of Health Perth WA Australia

Paediatric Neurology and Neurorehabilitation Unit Lausanne University Hospital Lausanne Switzerland

Parent Project Onlus Rome Italy

Pasteur Institute of Iran Karaj complex Tehran Iran

Semmelweis Medical University 2 Department of Paediatric Neurology Budapest Hungary

Unitat de Malalties Neuromusculars Servei de Neurologia Hospital de la Santa Creu i Sant Pau de Barcelona Barcelona Spain

University Medical Center Freiburg Freiburg Germany

WIV ISP Brussels Belgium

Zobrazit více v PubMed

Bladen CL, Rafferty K, Straub V, Monges S, Moresco A, Dawkins H, et al. The TREAT-NMD duchenne muscular dystrophy registries: Conception, design, and utilization by industry and academia. Human Mutation. 2013;34(11):1449–57. PubMed

Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD global database: Analysis of more than 7,000 duchenne muscular dystrophy mutations. Human Mutation. 2015;36(4):395–402. PubMed PMC

Pane M, Mazzone ES, Sivo S, Sormani MP, Messina S, D′Amico A, et al. Long term natural history data in ambulant boys with duchenne muscular dystrophy: 36-month changes. PLoS One. 2014;9(10):e108205. PubMed PMC

Henricson EK, Abresch RT, Cnaan A, Hu F, Duong T, Arrieta A, et al. The cooperative international neuromuscular research group Duchenne natural history study: Glucocorticoid treatment preserves clinically meaningful functional milestones and reduces rate of disease progression as measured by manual muscle testing and other commonly used clinical trial outcome measures. Muscle & Nerve. 2013;48(1):55–67. PubMed PMC

Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71(3):304–13. PubMed

Gowers WR, Taylor J. A manual of diseases of the nervous system London: J. & A. Chuchill; 1892.

Humbertclaude V, Hamroun D, Bezzou K, Bérard C, Boespflug-Tanguy O, Bommelaer C, et al. Motor and respiratory heterogeneity in Duchenne patients: Implication forclinical trials. European Journal of Paediatric Neurology. 2012;16(2):149–60. PubMed

Baxter P. Treatment of the heart in Duchenne muscular dystrophy. Developmental Medicine & Child Neurology. 2006;48(03):163. PubMed

Emery AEH. The muscular dystrophies. The Lancet. 2002;359(9307):687–95. PubMed

Hoffman EP, Reeves E, Damsker J, Nagaraju K, McCall JM, Connor EM, et al. Novel Approaches to Corticosteroid Treatment in Duchenne Muscular Dystrophy. Physical Medicine and Rehabilitation Clinics of North America. 2012;23(4):821–8. PubMed PMC

Sejerson T, Bushby K. Standards of Care for Duchenne Muscular Dystrophy: Brief Treat-NMD Recommendations In: Espinós C, Felipo V, Palau F, editors. Inherited Neuromuscular Diseases. Springer; Netherlands; 2009. pp. 13–21. PubMed

Landfeldt E, Lindgren P, Bell CF, Schmitt C, Guglieri M, Straub V, et al. Compliance to care guidelines for duchenne muscular dystrophy. Journal of Neuromuscular Diseases. 2015;2(1):63–72. PubMed PMC

Bladen CL, Rafferty K, Straub V, Monges S, Moresco A, Dawkins H, et al. The TREAT-NMD Duchenne muscular dystrophy registries: Conception, design, and utilization by industry and academia. Hum Mutat. 2013;34(11):1449–57. PubMed

Turnbull BW. The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society. Series B (Methodological). 1976;290–95.

Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part Diagnosis, and pharmacological and psychosocial management. The Lancet Neurology. 2010;9(1):77–93. PubMed

Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part Implementation of multidisciplinary care. The Lancet Neurology. 2010;9(2):177–89. PubMed

Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen G-J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Human Mutation. 2009;30(3):293–9. PubMed

Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F, et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Human Molecular Genetics. 2003;12(8):907–14. PubMed

Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, van Ommen G-JB, den Dunnen JT, et al. Antisense-induced multiexon skipping for duchenne muscular dystrophy makes more sense. The American Journal of Human Genetics. 2004;74(1):83–92. PubMed PMC

van Ommen G-J, van Deutekom J, Aartsma-Rus A. The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther. 2008;10(2):140–9. PubMed

van Ommen G-JB, Aartsma-Rus A. Advances in therapeutic RNA-targeting. New Biotechnology. 2013;30(3):299–301. PubMed

Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle & Nerve. 2014;50(4):477–87. PubMed PMC

Gloss D, Moxley RT 3rd, Ashwal S, Oskoui M. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(5):465–72. PubMed PMC

Bello L, Piva L, Barp A, Taglia A, Picillo E, Vasco G, et al. Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology. 2012;79(2):159–62. PubMed PMC

van den Bergen JC, Ginjaar HB, Niks EH, Aartsma-Rus A, Verschuuren JJGM. Prolonged ambulation in duchenne patients with a mutation amenable to exon 44 skipping. Journal of Neuromuscular Diseases. 2014;1(1):91–4. PubMed

Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2016;(5):CD003725. PubMed PMC

Rifai Z, Welle S, Moxley RT, Lorenson M, Griggs RC. Effect of prednisone on protein metabolism in Duchenne dystrophy. American Journal of Physiology - Endocrinology and Metabolism. 1995;268(1):E67–E74. PubMed

Spuler S, Engel AG. Unexpected sarcolemmal complement membrane attack complex deposits on nonnecrotic muscle fibers in muscular dystrophies. Neurology. 1998;50(1):41–6. PubMed

Griggs RC, Moxley RT 3rd, Mendell JR, Fenichel GM, Brooke MH, Pestronk A, et al. Duchenne dystrophy: Randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology. 1993;43(3 Pt 1):520–7. PubMed

Pasquini F, Guerin C, Blake D, Davies K, Karpati G, Holland P. The effect of glucocorticoids on the accumulation of utrophin by cultured normal and dystrophic human skeletal muscle satellite cells. Neuromuscular Disorders. 1995;5(2):105–14. PubMed

Sklar RM, Brown RH Jr. Methylprednisolone increases dystrophin levels by inhibiting myotube death during myogenesis of normal human muscle in vitro. Journal of the Neurological Sciences. 1991;101(1):73–81. PubMed

Takeuchi F, Yonemoto N, Nakamura H, Shimizu R, Komaki H, Mori-Yoshimura M, et al. Prednisolone improves walking in Japanese Duchenne muscular dystrophy patients. J Neurol. 2013;260(12):3023–9. PubMed PMC

Barber BJ, Andrews JG, Lu Z, West NA, Meaney FJ, Price ET, et al. Oral Corticosteroids and Onset of Cardiomyopathy in Duchenne Muscular Dystrophy. The Journal of Pediatrics. 2013;163(4):1080–4.e1. PubMed

Smith AD, Koreska J, Moseley CF. Progression of scoliosis in Duchenne muscular dystrophy. The Journal of Bone & Joint Surgery. 1989;71(7):1066–74. PubMed

Alman BA, Raza SN, Biggar WD. Steroid treatment and the development of scoliosis in males with duchenne muscular dystrophy. The Journal of Bone & Joint Surgery. 2004;86(3):519–24. PubMed

Yilmaz Ö, Karaduman A, Topaloğlu H. Prednisolone therapy in Duchenne muscular dystrophy prolongs ambulation and prevents scoliosis. European Journal of Neurology. 2004;11(8):541–4. PubMed

Townsend D, Yasuda S, Chamberlain J, Metzger JM. Cardiac consequences to skeletal muscle-centric therapeutics for duchenne muscular dystrophy. Trends in Cardiovascular Medicine. 2009;19(2):49–54. PubMed

van den Bergen JC, Hiller M, Bohringer S, Vijfhuizen L, Ginjaar HB, Chaouch A, et al. Validation of genetic modifiers for Duchenne muscular dystrophy: A multicentre study assessing SPP1 and LTBP4 variants. Journal of Neurology, Neurosurgery, and Psychiatry. 2015;86(10):1060–5. PubMed PMC

Flanigan KM, Ceco E, Lamar KM, Kaminoh Y, Dunn DM, Mendell JR, et al. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Annals of Neurology. 2013;73(4):481–8. PubMed PMC

Pane M, Mazzone ES, Sormani MP, Messina S, Vita GL, Fanelli L, et al. 6 Minute walk test in duchenne MD patients with different mutations: 12 month changes. PLoS One. 2014;9(1):e83400. PubMed PMC

Findlay AR, Wein N, Kaminoh Y, Taylor LE, Dunn DM, Mendell JR, et al. Clinical phenotypes as predictors of the outcome of skipping around DMD exon 45. Annals of Neurology. 2015;77(4):668–74. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...