Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
G1002274
Medical Research Council - United Kingdom
PubMed
29125504
PubMed Central
PMC5701764
DOI
10.3233/jnd-170280
PII: JND170280
Knihovny.cz E-zdroje
- Klíčová slova
- DMD, Duchenne muscular dystrophy, Neuromuscular diseases, TREAT-NMD,
- MeSH
- databáze jako téma MeSH
- dítě MeSH
- dospělí MeSH
- Duchennova muskulární dystrofie epidemiologie genetika terapie MeSH
- hormony kůry nadledvin terapeutické užití MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- průřezové studie MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hormony kůry nadledvin MeSH
BACKGROUND: Recent short-term clinical trials in patients with Duchenne Muscular Dystrophy (DMD) have indicated greater disease variability in terms of progression than expected. In addition, as average life-expectancy increases, reliable data is required on clinical progression in the older DMD population. OBJECTIVE: To determine the effects of corticosteroids on major clinical outcomes of DMD in a large multinational cohort of genetically confirmed DMD patients. METHODS: In this cross-sectional study we analysed clinical data from 5345 genetically confirmed DMD patients from 31 countries held within the TREAT-NMD global DMD database. For analysis patients were categorised by corticosteroid background and further stratified by age. RESULTS: Loss of ambulation in non-steroid treated patients was 10 years and in corticosteroid treated patients 13 years old (p = 0.0001). Corticosteroid treated patients were less likely to need scoliosis surgery (p < 0.001) or ventilatory support (p < 0.001) and there was a mild cardioprotective effect of corticosteroids in the patient population aged 20 years and older (p = 0.0035). Patients with a single deletion of exon 45 showed an increased survival in contrast to other single exon deletions. CONCLUSIONS: This study provides data on clinical outcomes of DMD across many healthcare settings and including a sizeable cohort of older patients. Our data confirm the benefits of corticosteroid treatment on ambulation, need for scoliosis surgery, ventilation and, to a lesser extent, cardiomyopathy. This study underlines the importance of data collection via patient registries and the critical role of multi-centre collaboration in the rare disease field.
1 1 Ogawa Higashi Kodaira Tokyo Japan
Action Duchenne Epicentre London UK
Center for Gene Therapy The Research Institute Nationwide Children's Hospital Columbus OH USA
Centre for Comparative Genomics Murdoch University Murdoch WA Australia
Centro de Genética Médica Jacinto Magalhães Porto Portugal
China DMD Care and Support Association c o China Dolls Xicheng district China
Clinic of Neurology University Hospital Sofiamed Sofia Bulgaria
Department of Child Neurology Turku University Central Hospital Turku Finland
Department of Epidemiology Erasmus University Medical Centre Rotterdam The Netherlands
Department of Neurology Auckland DHB Auckland New Zealand
Department of Neurology Medical University of Warsaw Warsaw Poland
Department of Neurology Medical University Sofia Sofia Bulgaria
DuchenneConnect Hackensack NJ USA
Hospital de Pediatría J P Garrahan Pichincha Argentina
Institute for Biostatistic and Analyses Masaryk University Brno Czech Republic
Institute of Neurology Psychiatry and Narcology of NAMS Kharkiv Ukraine
Institute of Rare Diseases Research SpainRDR and CIBERER Institute of Health Carlos 3 Madrid Spain
Institute of Social and Preventive Medicine University of Bern Bern Switzerland
Kanchi Kamakoti CHILDS Trust and Apollo Children's Hospitals Chennai India
Leiden University Medical Center Department of Medical Statistics Leiden The Netherlands
Leiden University Medical Center Department of Neurology Leiden The Netherlands
Moscow Institute of Pediatrics Moscow Russia
National Institute of Legal Medicine Mina Minovici Genetics Laboratory Bucharest Romania
Neurology and Neurogenic Unit Egypt Air Hospital Ain Shams University Egypt
NIEH Department of Molecular Genetics and Diagnostics Budapest Hungary
Office of Population Health Genomics Department of Health Perth WA Australia
Paediatric Neurology and Neurorehabilitation Unit Lausanne University Hospital Lausanne Switzerland
Parent Project Onlus Rome Italy
Pasteur Institute of Iran Karaj complex Tehran Iran
Semmelweis Medical University 2 Department of Paediatric Neurology Budapest Hungary
Zobrazit více v PubMed
Bladen CL, Rafferty K, Straub V, Monges S, Moresco A, Dawkins H, et al. The TREAT-NMD duchenne muscular dystrophy registries: Conception, design, and utilization by industry and academia. Human Mutation. 2013;34(11):1449–57. PubMed
Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD global database: Analysis of more than 7,000 duchenne muscular dystrophy mutations. Human Mutation. 2015;36(4):395–402. PubMed PMC
Pane M, Mazzone ES, Sivo S, Sormani MP, Messina S, D′Amico A, et al. Long term natural history data in ambulant boys with duchenne muscular dystrophy: 36-month changes. PLoS One. 2014;9(10):e108205. PubMed PMC
Henricson EK, Abresch RT, Cnaan A, Hu F, Duong T, Arrieta A, et al. The cooperative international neuromuscular research group Duchenne natural history study: Glucocorticoid treatment preserves clinically meaningful functional milestones and reduces rate of disease progression as measured by manual muscle testing and other commonly used clinical trial outcome measures. Muscle & Nerve. 2013;48(1):55–67. PubMed PMC
Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71(3):304–13. PubMed
Gowers WR, Taylor J. A manual of diseases of the nervous system London: J. & A. Chuchill; 1892.
Humbertclaude V, Hamroun D, Bezzou K, Bérard C, Boespflug-Tanguy O, Bommelaer C, et al. Motor and respiratory heterogeneity in Duchenne patients: Implication forclinical trials. European Journal of Paediatric Neurology. 2012;16(2):149–60. PubMed
Baxter P. Treatment of the heart in Duchenne muscular dystrophy. Developmental Medicine & Child Neurology. 2006;48(03):163. PubMed
Emery AEH. The muscular dystrophies. The Lancet. 2002;359(9307):687–95. PubMed
Hoffman EP, Reeves E, Damsker J, Nagaraju K, McCall JM, Connor EM, et al. Novel Approaches to Corticosteroid Treatment in Duchenne Muscular Dystrophy. Physical Medicine and Rehabilitation Clinics of North America. 2012;23(4):821–8. PubMed PMC
Sejerson T, Bushby K. Standards of Care for Duchenne Muscular Dystrophy: Brief Treat-NMD Recommendations In: Espinós C, Felipo V, Palau F, editors. Inherited Neuromuscular Diseases. Springer; Netherlands; 2009. pp. 13–21. PubMed
Landfeldt E, Lindgren P, Bell CF, Schmitt C, Guglieri M, Straub V, et al. Compliance to care guidelines for duchenne muscular dystrophy. Journal of Neuromuscular Diseases. 2015;2(1):63–72. PubMed PMC
Bladen CL, Rafferty K, Straub V, Monges S, Moresco A, Dawkins H, et al. The TREAT-NMD Duchenne muscular dystrophy registries: Conception, design, and utilization by industry and academia. Hum Mutat. 2013;34(11):1449–57. PubMed
Turnbull BW. The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society. Series B (Methodological). 1976;290–95.
Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part Diagnosis, and pharmacological and psychosocial management. The Lancet Neurology. 2010;9(1):77–93. PubMed
Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part Implementation of multidisciplinary care. The Lancet Neurology. 2010;9(2):177–89. PubMed
Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen G-J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Human Mutation. 2009;30(3):293–9. PubMed
Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F, et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Human Molecular Genetics. 2003;12(8):907–14. PubMed
Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, van Ommen G-JB, den Dunnen JT, et al. Antisense-induced multiexon skipping for duchenne muscular dystrophy makes more sense. The American Journal of Human Genetics. 2004;74(1):83–92. PubMed PMC
van Ommen G-J, van Deutekom J, Aartsma-Rus A. The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther. 2008;10(2):140–9. PubMed
van Ommen G-JB, Aartsma-Rus A. Advances in therapeutic RNA-targeting. New Biotechnology. 2013;30(3):299–301. PubMed
Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle & Nerve. 2014;50(4):477–87. PubMed PMC
Gloss D, Moxley RT 3rd, Ashwal S, Oskoui M. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(5):465–72. PubMed PMC
Bello L, Piva L, Barp A, Taglia A, Picillo E, Vasco G, et al. Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology. 2012;79(2):159–62. PubMed PMC
van den Bergen JC, Ginjaar HB, Niks EH, Aartsma-Rus A, Verschuuren JJGM. Prolonged ambulation in duchenne patients with a mutation amenable to exon 44 skipping. Journal of Neuromuscular Diseases. 2014;1(1):91–4. PubMed
Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2016;(5):CD003725. PubMed PMC
Rifai Z, Welle S, Moxley RT, Lorenson M, Griggs RC. Effect of prednisone on protein metabolism in Duchenne dystrophy. American Journal of Physiology - Endocrinology and Metabolism. 1995;268(1):E67–E74. PubMed
Spuler S, Engel AG. Unexpected sarcolemmal complement membrane attack complex deposits on nonnecrotic muscle fibers in muscular dystrophies. Neurology. 1998;50(1):41–6. PubMed
Griggs RC, Moxley RT 3rd, Mendell JR, Fenichel GM, Brooke MH, Pestronk A, et al. Duchenne dystrophy: Randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology. 1993;43(3 Pt 1):520–7. PubMed
Pasquini F, Guerin C, Blake D, Davies K, Karpati G, Holland P. The effect of glucocorticoids on the accumulation of utrophin by cultured normal and dystrophic human skeletal muscle satellite cells. Neuromuscular Disorders. 1995;5(2):105–14. PubMed
Sklar RM, Brown RH Jr. Methylprednisolone increases dystrophin levels by inhibiting myotube death during myogenesis of normal human muscle in vitro. Journal of the Neurological Sciences. 1991;101(1):73–81. PubMed
Takeuchi F, Yonemoto N, Nakamura H, Shimizu R, Komaki H, Mori-Yoshimura M, et al. Prednisolone improves walking in Japanese Duchenne muscular dystrophy patients. J Neurol. 2013;260(12):3023–9. PubMed PMC
Barber BJ, Andrews JG, Lu Z, West NA, Meaney FJ, Price ET, et al. Oral Corticosteroids and Onset of Cardiomyopathy in Duchenne Muscular Dystrophy. The Journal of Pediatrics. 2013;163(4):1080–4.e1. PubMed
Smith AD, Koreska J, Moseley CF. Progression of scoliosis in Duchenne muscular dystrophy. The Journal of Bone & Joint Surgery. 1989;71(7):1066–74. PubMed
Alman BA, Raza SN, Biggar WD. Steroid treatment and the development of scoliosis in males with duchenne muscular dystrophy. The Journal of Bone & Joint Surgery. 2004;86(3):519–24. PubMed
Yilmaz Ö, Karaduman A, Topaloğlu H. Prednisolone therapy in Duchenne muscular dystrophy prolongs ambulation and prevents scoliosis. European Journal of Neurology. 2004;11(8):541–4. PubMed
Townsend D, Yasuda S, Chamberlain J, Metzger JM. Cardiac consequences to skeletal muscle-centric therapeutics for duchenne muscular dystrophy. Trends in Cardiovascular Medicine. 2009;19(2):49–54. PubMed
van den Bergen JC, Hiller M, Bohringer S, Vijfhuizen L, Ginjaar HB, Chaouch A, et al. Validation of genetic modifiers for Duchenne muscular dystrophy: A multicentre study assessing SPP1 and LTBP4 variants. Journal of Neurology, Neurosurgery, and Psychiatry. 2015;86(10):1060–5. PubMed PMC
Flanigan KM, Ceco E, Lamar KM, Kaminoh Y, Dunn DM, Mendell JR, et al. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Annals of Neurology. 2013;73(4):481–8. PubMed PMC
Pane M, Mazzone ES, Sormani MP, Messina S, Vita GL, Fanelli L, et al. 6 Minute walk test in duchenne MD patients with different mutations: 12 month changes. PLoS One. 2014;9(1):e83400. PubMed PMC
Findlay AR, Wein N, Kaminoh Y, Taylor LE, Dunn DM, Mendell JR, et al. Clinical phenotypes as predictors of the outcome of skipping around DMD exon 45. Annals of Neurology. 2015;77(4):668–74. PubMed PMC