Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose Phosphorylase Specificity
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
HBC.2019.2175
Agency for Innovation and Entrepreneurship (VLAIO)
LTC 18041
Cargill R&D Europe
LTC 20069
Cargill R&D Europe
CA16225
Cargill R&D Europe
CA18132
Cargill R&D Europe
PubMed
34541742
DOI
10.1002/cbic.202100401
Knihovny.cz E-zdroje
- Klíčová slova
- enzyme discovery, glucosylgalactose phosphorylase, glycoside hydrolase family GH94, glycoside phosphorylase, sequence similarity networks,
- MeSH
- disacharidy biosyntéza chemie MeSH
- fylogeneze MeSH
- glykosidhydrolasy chemie genetika metabolismus MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- Paenibacillus polymyxa enzymologie MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- disacharidy MeSH
- glykosidhydrolasy MeSH
The substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks. The identification and experimental screening of unknown clusters led to the discovery of an enzyme from the soil bacterium Paenibacillus polymyxa that acts as a 4-O-β-d-glucosyl-d-galactose phosphorylase (GGalP), a specificity that has not been reported to date. Detailed characterization of GGalP revealed that its kinetic parameters were consistent with those of other known phosphorylases. Furthermore, the enzyme could be used for production of the rare disaccharides 4-O-β-d-glucosyl-d-galactose and 4-O-β-d-glucosyl-l-arabinose. Our current work highlights the power of rational sequence space exploration in the search for novel enzyme specificities, as well as the potential of phosphorylases for rare disaccharide synthesis.
Zobrazit více v PubMed
T. Desmet, W. Soetaert, Biocatal. Biotransform. 2011, 29, 1-18.
M. Kitaoka, Appl. Microbiol. Biotechnol. 2015, 99, 8377-8390.
Z. Ubiparip, M. De Doncker, K. Beerens, J. Franceus, T. Desmet, Appl. Microbiol. Biotechnol. 2021, 105, 4073-4087.
W. Helbert, L. Poulet, S. Drouillard, M. Loiodice, M. Couturier, V. Lombard, N. Terrapon, J. Turchetto, R. Vincentelli, B. Henrissat, Proc. Natl. Acad. Sci. USA 2019, 116, 6063-6068.
K. Mewis, N. Lenfant, V. Lombard, B. Henrissat, Appl. Environ. Microbiol. 2016, 82, 1686-1692.
M. R. Mäkelä, A. Dilokpimol, S. M. Koskela, J. Kuuskeri, R. P. de Vries, K. Hildén, Microb. Biotechnol. 2018, 11, 869-880.
C. R. Santos, P. A. C. R. Costa, P. S. Vieira, S. E. T. Gonzalez, T. L. R. Correa, E. A. Lima, F. Mandelli, R. A. S. Pirolla, M. N. Domingues, L. Cabral, M. P. Martins, R. L. Cordeiro, A. T. Junior, B. P. Souza, É. T. Prates, F. C. Gozzo, G. F. Persinoti, M. S. Skaf, M. T. Murakami, Nat. Chem. Biol. 2020, 16, 920-929.
D. Petit, R. E. Teppa, A. Harduin-Lepers, Glycobiology 2020, 31, 243-259.
D. Brown, K. Sjölander, PLoS Comput. Biol. 2006, 2, 479-483.
H. J. Atkinson, J. H. Morris, T. E. Ferrin, P. C. Babbitt, PLoS One 2009, 4, 1-14.
J. A. Gerlt, J. T. Bouvier, D. B. Davidson, H. J. Imker, B. Sadkhin, D. R. Slater, K. L. Whalen, Biochim. Biophys. Acta 2015, 1854, 1019-1037.
L. Fu, B. Niu, Z. Zhu, S. Wu, W. Li, Bioinformatics 2012, 28, 3150-3152.
E. C. O. Neill, G. Pergolizzi, C. E. M. Stevenson, D. M. Lawson, S. A. Nepogodiev, R. A. Field, Carbohydr. Res. 2017, 451, 118-132.
M. Reichenbecher, F. Lottspeich, K. Bronnenmeier, Eur. J. Biochem. 1997, 247, 262-267.
T. Sawano, W. Saburi, K. Hamura, H. Matsui, H. Mori, FEBS J. 2013, 280, 4463-4473.
M. Nakajima, H. Toyoizumi, K. Abe, H. Nakai, H. Taguchi, M. Kitaoka, PLoS One 2014, 9, 1-9.
A. E. Ciocchini, L. S. Guidolin, A. C. Casabuono, A. S. Couto, N. Inon de lannino, R. A. Ugalde, Proc. Natl. Acad. Sci. USA 2007, 104, 16492-16497.
J. Franceus, L. Decuyper, D. Matthias, T. Desmet, Appl. Microbiol. Biotechnol. 2018, 102, 3183-3191.
J. Franceus, D. Pinel, T. Desmet, Appl. Environ. Microbiol. 2017, 83, 1-13.
J. V. D. Gawronski, D. R. Benson, Anal. Biochem. 2004, 327, 114-118.
S. S. Macdonald, Z. Armstrong, C. Morgan-lang, M. Osowiecka, K. Robinson, S. J. Hallam, S. G. Withers, Cell Chem. Biol. 2019, 26, 1001-1012.
Y. Honda, M. Kitaoka, K. Hayashi, Biochem. J. 2004, 377, 225-232.
K. Hamura, W. Saburi, H. Matsui, H. Mori, Carbohydr. Res. 2013, 379, 21-25.
H. Nakai, M. Abou Hachem, B. O. Petersen, Y. Westphal, K. Mannerstedt, M. J. Baumann, A. Dilokpimol, H. A. Schols, J. Ø. Duus, B. Svensson, Biochimie 2010, 92, 1818-1826.
T. Sasaki, in Methods in Enzymology, Elsevier, Amsterdam, 1988, pp. 468-472.
J. K. Alexander, J. Biol. Chem. 1968, 243, 2899-2904.
G. Hai Tran, T. Desmet, M. R. M. De Groeve, W. Soetaert, Biotechnol. Prog. 2011, 27, 326-332.
M. Kitaoka, Y. Matsuoka, K. Mori, M. Nishimoto, K. Hayashi, Biosci. Biotechnol. Biochem. 2012, 76, 343-348.
R. Patowary, H. Deka, in Beneficial Microbes in Agro-Ecology (Eds.: N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, A. Sankaranarayanan), Academic Press, 2020, pp. 339-361.
K. Sheth, J. K. Alexander, J. Biol. Chem. 1969, 244, 457-464.
S. Kuhaudomlarp, S. Walpole, C. E. M. Stevenson, S. A. Nepogodiev, D. M. Lawson, J. Angulo, R. A. Field, ChemBioChem 2019, 20, 181-192.
E. Rajashekhara, M. Kitaoka, Y.-K. Kim, K. Hayashi, Biosci. Biotechnol. Biochem. 2002, 66, 2578-2586.
B. Nidetzky, R. Griessler, A. Schwarz, B. Splechtna, J. Mol. Catal. B 2004, 29, 241-248.
T. Verhaeghe, M. Diricks, D. Aerts, W. Soetaert, T. Desmet, J. Mol. Catal. B 2013, 96, 81-88.
R. M. Mizanur, A. K. K. Griffin, N. L. Pohl, Archaea 2007, 2, 169-176.
T. Nihira, E. Suzuki, M. Kitaoka, M. Nishimoto, K. Ohtsubo, H. Nakai, J. Biol. Chem. 2013, 288, 27366-27374.
T. Senoura, S. Ito, H. Taguchi, M. Higa, S. Hamada, H. Matsui, T. Ozawa, S. Jin, J. Watanabe, J. Wasaki, S. Ito, Biochem. Biophys. Res. Commun. 2011, 408, 701-706.
Y. Kaci, A. Heyraud, M. Barakat, T. Heulin, Res. Microbiol. 2005, 156, 522-531.
J. H. Sloneker, D. G. Orentas, C. A. Knutson, P. R. Watson, A. Jeanes, Can. J. Chem. 1968, 46, 3353-3361.
S. N. Senchenkova, Y. A. Knirel, L. M. Likhosherstov, A. S. Shashkov, V. N. Shibaev, L. A. Starukhina, V. V. Deryabin, Carbohydr. Res. 1995, 266, 103-113.
H. Fukui, M. Tanaka, A. Misaki, Agric. Biol. Chem. 1985, 49, 2343-2349.
V. Lombard, H. G. Ramulu, E. Drula, P. M. Coutinho, B. Henrissat, Nucleic Acids Res. 2013, 42, 490-495.
F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. Mcwilliam, M. Remmert, J. Söding, J. D. Thompson, D. G. Higgins, Mol. Syst. Biol. 2011, 7, 1-6.
C. M. Bianchetti, N. L. Elsen, B. G. Fox, G. N. Phillips Junior, Acta Crystallogr. Sect. F 2011, 67, 1345-1349.
M. N. Price, P. S. Dehal, A. P. Arkin, Mol. Biol. Evol. 2009, 26, 1641-1650.
Z. Ubiparip, D. Sáez Moreno, K. Beerens, T. Desmet, Appl. Microbiol. Biotechnol. 2020, 104, 8327-8337.