Discovery of mammalian collagens I and III within ancient poriferan biopolymer spongin
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
OPUS 19 (2020/37/B/ST5/01909)
Narodowe Centrum Nauki (National Science Centre)
MAESTRO 12 (2020/38/A/ST5/00151)
Narodowe Centrum Nauki (National Science Centre)
SONATA 17 no. 2021/43/D/ST5/00853
Narodowe Centrum Nauki (National Science Centre)
Funding for Refugee Scholars and Scientists from Ukraine, Personal Ref. No. 05020407B
Volkswagen Foundation (VolkswagenStiftung)
Grant No. 0511/SBAD/2551
Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
grants #2018/18503-2, #2022/03410-4, #2022/04695-2 and #2022/04703-5
Compagnia di San Paolo (Fondazione Compagnia di San Paolo)
PubMed
40082406
PubMed Central
PMC11906918
DOI
10.1038/s41467-025-57460-y
PII: 10.1038/s41467-025-57460-y
Knihovny.cz E-zdroje
- MeSH
- biopolymery chemie MeSH
- kolagen typ III * chemie metabolismus MeSH
- kolagen typu I * chemie metabolismus MeSH
- magnetická rezonanční spektroskopie MeSH
- Porifera * chemie metabolismus MeSH
- proteomika MeSH
- Ramanova spektroskopie MeSH
- savci metabolismus MeSH
- simulace molekulární dynamiky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopolymery MeSH
- kolagen typ III * MeSH
- kolagen typu I * MeSH
- spongin MeSH Prohlížeč
Spongin is a fundamental biopolymer that has played a crucial role in the skeletogenesis of keratosan sponges for over 800 million years. This biomaterial had so far remained chemically unidentified and believed to be an enigmatic type of halogenated collagen-keratin-based bioelastomer. Here we show collagen I and III as the main structural components of spongin. Proteomics, 13C solid state NMR and Raman spectroscopy confirm the identity of collagenous domains in spongin with collagen from mammals. Using an HPLC-MS analysis, we found halogenated di- and tri-tyrosines as crosslinking agents in spongin. Using molecular dynamics modeling, we solvated the crystal structures of collagen mimetic peptides for type I and type III collagens in four different systems, including selected brominated crosslinks. The results underscore the complex interplay between the collagen structures and crosslinks, raising intriguing questions about the molecular mechanisms underlying collagen chemistry within spongin as an ancient biocomposite.
Aix Marseille University Avignon Université CNRS IRD IMBE Marseille France
Center for Advanced Technology Adam Mickiewicz University Poznan Poland
Center for Computing in Engineering and Sciences Sao Paulo Brazil
Department of Histology and Embryology Poznań University of Life Sciences Poznan Poland
Department of Pharmacy National Pirogov Memorial Medical University Vinnytsya Vinnytsia Ukraine
Institute for Nanoscale and Biobased Materials TU Bergakademie Freiberg Freiberg Germany
Institute of Analytical Chemistry TU Bergakademie Freiberg Freiberg Germany
Institute of Chemistry Universidade Estadual de Campinas Sao Paulo Brazil
International Institute of Biomineralogy GmbH Freiberg Germany
Leibniz Institute of Polymer Research Dresden Dresden Germany
Max Planck Institute for Chemical Physics of Solids Dresden Germany
NanoBioMedical Centre Adam Mickiewicz University in Poznań 61 614 Poznań Poland
Zobrazit více v PubMed
Turner, E. C. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Nature596, 87–91 (2021). PubMed PMC
Ehrlich, H. Marine Biological Materials of Invertebrate Origin (Springer, 2019).
Tsurkan, M. V. et al. Progress in chitin analytics. Carb. Pol.252, 117204 (2021). PubMed
Ehrlich, H. et al. Arrested in glass: actin within sophisticated architectures of biosilica in sponges. Adv. Sci.9, 2105059 (2022). PubMed PMC
Ehrlich, H. et al. Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nat. Chem.2, 1084–1088 (2010). PubMed
Ehrlich, H., Wysokowski, M., Żółtowska-Aksamitowska, S., Petrenko, I. & Jesionowski, T. Collagens of poriferan origin. Mar. Drugs16, 79 (2018). PubMed PMC
Pozzolini, M. et al. Potential biomedical applications of collagen filaments derived from the marine demosponges Iircinia oros (Schmidt, 1864) and Sarcotragus foetidus (Schmidt, 1862). Mar. Drugs19, 563 (2021). PubMed PMC
Tang, W. J., Fernandez, J. G., Sohn, J. J. & Amemiya, C. T. Chitin is endogenously produced in vertebrates. Curr. Biol.25, 897–900 (2015). PubMed PMC
Revell, C. K. et al. Collagen fibril assembly: new approaches to unanswered questions. Matrix Biol.12, 100079 (2021). PubMed PMC
Shenoy, M. et al. Collagen structure, synthesis, and its applications: a systematic review. Cureus14, e24856 (2022). PubMed PMC
Jesionowski, T. et al. Marine spongin: naturally prefabricated 3D scaffold-based biomaterial. Mar. Drugs16, 88 (2018). PubMed PMC
Petrenko, I. et al. Extreme biomimetics: preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges. Sci. Adv.5, eaax2805 (2019). PubMed PMC
Tsurkan, D. et al. Extreme biomimetics: designing of the first nanostructured 3D spongin–atacamite composite and its application. Adv. Mater.33, 2101682 (2021). PubMed
Tekman, S. & Öner, N. A pentose identified in the carbohydrate group of spongin. Nature200, 77–78 (1963). PubMed
Gaino, E. & Pronzato, R. Ultrastructural evidence of bacterial damage to Spongia officinalis fibres (Porifera, Demospongiae). Dis. Aquat. Organ.6, 67–74 (1989).
Fidler, A. L. et al. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. Elife6, e24176 (2017). PubMed PMC
Brown, H. & Klauder, J. V. Sulphur content of hair and of nails in abnormal states: therapeutic value of hydrolyzed wool; I. Hair. Arch. Derm. Syphilol.27, 584–604 (1933).
Block, R. J. & Bolling, D. The amino acid composition of keratins. J. Biol. Chem.127, 685–693 (1939).
Hynes, R. O. The evolution of metazoan extracellular matrix. J. Cell Biol.196, 671–679 (2012). PubMed PMC
Boot-Handford, R. P. & Tuckwell, D. S. Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest. Bioessays25, 142–151 (2003). PubMed
Cicchi, R. & Pavone, F. S. Probing collagen organization: practical guide for second-harmonic generation (SHG) imaging. Methods Mol. Biol.1627, 409–425 (2017). PubMed
Simon, P. et al. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep.8, 13696 tabfig(2018). PubMed PMC
Aliev, A. E. Solid-state NMR studies of collagen-based parchments and gelatin. Biopolymers77, 230–245 (2005). PubMed
Lorenz-Fonfria, V. A. Infrared difference spectroscopy of proteins: from bands to bonds. Chem. Rev.120, 3466–3576 (2020). PubMed
Martínez Cortizas, A. & López-Costas, O. Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach. Sci. Rep.10, 1–14 (2020). PubMed PMC
Nguyen, T. T. et al. Characterization of type I and IV collagens by Raman microspectroscopy: identification of spectral markers of the dermo-epidermal junction. J. Spectrosc.27, 421–427 (2012).
Becker, L. et al. Raman microspectroscopy identifies fibrotic tissues in collagen-related disorders via deconvoluted collagen type I spectra. Acta Biomater.162, 278–291 (2023). PubMed
Skieresz-Szewczyk, K., Jackowiak, H., Buchwald, T. & Szybowicz, T. Localization of alpha-keratins and corneous beta proteins in the lingual nail and epithelium on the ventral surface of the lingual apex in the domestic goose (Anser anser f. domestica) by using immunohistochemistry (IHC) and Raman microspectroscopy analysis. Anat. Rec.300, 1361–1368 (2017). PubMed
Skieresz‐Szewczyk, K., Buchwald, T., Szybowicz, M. & Jackowiak, H. Alpha‐keratin and corneous beta protein in the parakeratinized epithelium of the tongue in the domestic goose (Anser anser f. domestica). J. Exp. Zool. B Mol. Dev. Evol.332, 158–166 (2019). PubMed
Fiołka, M. J. et al. Candida albicans cell wall as a target of action for the protein–carbohydrate fraction from coelomic fluid of Dendrobaena veneta. Sci. Rep.10, 16352 (2020). PubMed PMC
Lefevre, T., Rousseau, M. E. & Pezolet, M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J.92, 2885–2895 (2007). PubMed PMC
Church, J. S., Poole, A. J. & Woodhead, A. L. The Raman analysis of films cast from dissolved feather keratin. Vib. Spectrosc.53, 107–111 (2010).
Buckley, M. Species identification of bovine, ovine and porcine type 1 collagen; comparing peptide mass fingerprinting and LC-based proteomics methods. Int. J. Mol. Sci.17, 445 (2016). PubMed PMC
Tillet, E., Franc, J. M., Franc, S. & Garrone, R. The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen. Comp. Biochem. Physiol. B Biochem. Mol. Biol.113, 239–246 (1996). PubMed
Dennell, R. Ortho-tyrosine in an insect cuticle. Nature178, 922–923 (1956). PubMed
Wisniak, J. The history of bromine from discovery to commodity. Indian J. Chem. Technol.9, 263–271 (2002).
Welinder, B. S., Roepstorff, P. & Andersen, S. O. The crustacean cuticle—IV. Isolation and identification of crosslinks from Cancer pagurus cuticle. Comp. Biochem. Physiol. Comp. Biochem.53, 529–533 (1976). PubMed
Louden, D., Inderbitzin, S., Peng, Z. & de Nys, R. Development of a new protocol for testing bath sponge quality. Aquaculture271, 275–285 (2007).
Su, R. S. C., Kim, Y. & Liu, J. C. Resilin: protein-based elastomeric biomaterials. Acta Biomater.10, 1601–1611 (2014). PubMed
Gahlawat, S., Nanda, V. & Shreiber, D. I. Designing collagens to shed light on the multi-scale structure–function mapping of matrix disorders. Matrix Biol.21, 100139 (2024). PubMed PMC
Asgari, M., Latifi, N., Heris, H. K., Vali, H. & Mongeau, L. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci. Rep.7, 1–10 (2017). PubMed PMC
de Alcântara, A. C. S., Felix, L. C., Galvão, D. S., Sollero, P. & Skaf, M. S. The role of the extrafibrillar volume on the mechanical properties of molecular models of mineralized bone microfibrils. ACS Biomater. Sci. Eng.9, 230–245 (2023). PubMed
Kuivaniemi, H. & Tromp, G. Type III collagen (COL3A1): gene and protein structure, tissue distribution, and associated diseases. Gene707, 151–171 (2019). PubMed PMC
Boudko, S. P. et al. Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds. J. Biol. Chem.299, 105318 (2023). PubMed PMC
Galli, R. et al. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues. PLoS ONE9, e110295 (2014). PubMed PMC
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform.10, 1–9 (2009). PubMed PMC
McGinnis, S. & Madden, T. L. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res.32, W20–W25 (2004). PubMed PMC
RCSB PDB. 7CWK: Structure of a Triple-helix Region of Human Collagen Type I. https://www.rcsb.org/structure/7CWK. 10.2210/pdb7CWK/pdb (2021).
RCSB PDB. 8HHI: Crystal Structure of a Triple-helix Region of Human Collagen Type III. https://www.rcsb.org/structure/8HHI. 10.2210/pdb8HHI/pdb (2023).
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys.153, 44130 (2020). PubMed PMC
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem.29, 1859–1865 (2008). PubMed
Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem.30, 1545–1614 (2009). PubMed PMC
Lee, J. et al. CHARMM-GUI Input Generator for NAMD. GROMACS. AMBER. OpenMM. and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput.12, 405–413 (2016). PubMed PMC
Jo, S. et al. CHARMM-GUI PDB Manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Adv. Protein Chem. Struct. Biol.96, 235–265 (2014). PubMed PMC
Park, S. J., Kern, N., Brown, T., Lee, J. & Im, W. CHARMM-GUI PDB Manipulator: various PDB structural modifications for biomolecular modeling and simulation. J. Mol. Biol.435, 167995 (2023). PubMed PMC