Discovery of mammalian collagens I and III within ancient poriferan biopolymer spongin

. 2025 Mar 13 ; 16 (1) : 2515. [epub] 20250313

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40082406

Grantová podpora
OPUS 19 (2020/37/B/ST5/01909) Narodowe Centrum Nauki (National Science Centre)
MAESTRO 12 (2020/38/A/ST5/00151) Narodowe Centrum Nauki (National Science Centre)
SONATA 17 no. 2021/43/D/ST5/00853 Narodowe Centrum Nauki (National Science Centre)
Funding for Refugee Scholars and Scientists from Ukraine, Personal Ref. No. 05020407B Volkswagen Foundation (VolkswagenStiftung)
Grant No. 0511/SBAD/2551 Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
grants #2018/18503-2, #2022/03410-4, #2022/04695-2 and #2022/04703-5 Compagnia di San Paolo (Fondazione Compagnia di San Paolo)

Odkazy

PubMed 40082406
PubMed Central PMC11906918
DOI 10.1038/s41467-025-57460-y
PII: 10.1038/s41467-025-57460-y
Knihovny.cz E-zdroje

Spongin is a fundamental biopolymer that has played a crucial role in the skeletogenesis of keratosan sponges for over 800 million years. This biomaterial had so far remained chemically unidentified and believed to be an enigmatic type of halogenated collagen-keratin-based bioelastomer. Here we show collagen I and III as the main structural components of spongin. Proteomics, 13C solid state NMR and Raman spectroscopy confirm the identity of collagenous domains in spongin with collagen from mammals. Using an HPLC-MS analysis, we found halogenated di- and tri-tyrosines as crosslinking agents in spongin. Using molecular dynamics modeling, we solvated the crystal structures of collagen mimetic peptides for type I and type III collagens in four different systems, including selected brominated crosslinks. The results underscore the complex interplay between the collagen structures and crosslinks, raising intriguing questions about the molecular mechanisms underlying collagen chemistry within spongin as an ancient biocomposite.

Aix Marseille University Avignon Université CNRS IRD IMBE Marseille France

Center for Advanced Technology Adam Mickiewicz University Poznan Poland

Center for Computational Science and Engineering Schwarzman College of Computing Massachusetts Institute of Technology Cambridge MA USA

Center for Computing in Engineering and Sciences Sao Paulo Brazil

Department of Analytical Chemistry Faculty of Chemical Technology University of Pardubice Pardubice Czech Republic

Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA USA

Department of Computational Mechanics School of Mechanical Engineering Universidade Estadual de Campinas Sao Paulo Brazil

Department of Histology and Embryology Poznań University of Life Sciences Poznan Poland

Department of Marine Biology Leon H Charney School of Marine Sciences University of Haifa Haifa Israel

Department of Medical Physics and Biomedical Engineering Faculty of Medicine Carl Gustav Carus Technische Universität Dresden Dresden Germany

Department of Pharmacy National Pirogov Memorial Medical University Vinnytsya Vinnytsia Ukraine

Institute for Nanoscale and Biobased Materials TU Bergakademie Freiberg Freiberg Germany

Institute of Analytical Chemistry TU Bergakademie Freiberg Freiberg Germany

Institute of Chemical Technology and Engineering Faculty of Chemical Technology Poznan University of Technology Poznan Poland

Institute of Chemistry Universidade Estadual de Campinas Sao Paulo Brazil

Institute of Geology Chair of Hydrogeology and Hydrochemistry TU Bergakademie Freiberg Freiberg Germany

Institute of Materials Research and Quantum Engineering Faculty of Materials Engineering and Technical Physics Poznan University of Technology Poznan Poland

International Institute of Biomineralogy GmbH Freiberg Germany

Laboratory for Atomistic and Molecular Mechanics Massachusetts Institute of Technology Cambridge MA USA

Leibniz Institute of Polymer Research Dresden Dresden Germany

Max Planck Institute for Chemical Physics of Solids Dresden Germany

NanoBioMedical Centre Adam Mickiewicz University in Poznań 61 614 Poznań Poland

Zobrazit více v PubMed

Turner, E. C. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Nature596, 87–91 (2021). PubMed PMC

Ehrlich, H. Marine Biological Materials of Invertebrate Origin (Springer, 2019).

Tsurkan, M. V. et al. Progress in chitin analytics. Carb. Pol.252, 117204 (2021). PubMed

Ehrlich, H. et al. Arrested in glass: actin within sophisticated architectures of biosilica in sponges. Adv. Sci.9, 2105059 (2022). PubMed PMC

Ehrlich, H. et al. Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nat. Chem.2, 1084–1088 (2010). PubMed

Ehrlich, H., Wysokowski, M., Żółtowska-Aksamitowska, S., Petrenko, I. & Jesionowski, T. Collagens of poriferan origin. Mar. Drugs16, 79 (2018). PubMed PMC

Pozzolini, M. et al. Potential biomedical applications of collagen filaments derived from the marine demosponges Iircinia oros (Schmidt, 1864) and Sarcotragus foetidus (Schmidt, 1862). Mar. Drugs19, 563 (2021). PubMed PMC

Tang, W. J., Fernandez, J. G., Sohn, J. J. & Amemiya, C. T. Chitin is endogenously produced in vertebrates. Curr. Biol.25, 897–900 (2015). PubMed PMC

Revell, C. K. et al. Collagen fibril assembly: new approaches to unanswered questions. Matrix Biol.12, 100079 (2021). PubMed PMC

Shenoy, M. et al. Collagen structure, synthesis, and its applications: a systematic review. Cureus14, e24856 (2022). PubMed PMC

Jesionowski, T. et al. Marine spongin: naturally prefabricated 3D scaffold-based biomaterial. Mar. Drugs16, 88 (2018). PubMed PMC

Petrenko, I. et al. Extreme biomimetics: preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges. Sci. Adv.5, eaax2805 (2019). PubMed PMC

Tsurkan, D. et al. Extreme biomimetics: designing of the first nanostructured 3D spongin–atacamite composite and its application. Adv. Mater.33, 2101682 (2021). PubMed

Tekman, S. & Öner, N. A pentose identified in the carbohydrate group of spongin. Nature200, 77–78 (1963). PubMed

Gaino, E. & Pronzato, R. Ultrastructural evidence of bacterial damage to Spongia officinalis fibres (Porifera, Demospongiae). Dis. Aquat. Organ.6, 67–74 (1989).

Fidler, A. L. et al. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. Elife6, e24176 (2017). PubMed PMC

Brown, H. & Klauder, J. V. Sulphur content of hair and of nails in abnormal states: therapeutic value of hydrolyzed wool; I. Hair. Arch. Derm. Syphilol.27, 584–604 (1933).

Block, R. J. & Bolling, D. The amino acid composition of keratins. J. Biol. Chem.127, 685–693 (1939).

Hynes, R. O. The evolution of metazoan extracellular matrix. J. Cell Biol.196, 671–679 (2012). PubMed PMC

Boot-Handford, R. P. & Tuckwell, D. S. Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest. Bioessays25, 142–151 (2003). PubMed

Cicchi, R. & Pavone, F. S. Probing collagen organization: practical guide for second-harmonic generation (SHG) imaging. Methods Mol. Biol.1627, 409–425 (2017). PubMed

Simon, P. et al. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep.8, 13696 tabfig(2018). PubMed PMC

Aliev, A. E. Solid-state NMR studies of collagen-based parchments and gelatin. Biopolymers77, 230–245 (2005). PubMed

Lorenz-Fonfria, V. A. Infrared difference spectroscopy of proteins: from bands to bonds. Chem. Rev.120, 3466–3576 (2020). PubMed

Martínez Cortizas, A. & López-Costas, O. Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach. Sci. Rep.10, 1–14 (2020). PubMed PMC

Nguyen, T. T. et al. Characterization of type I and IV collagens by Raman microspectroscopy: identification of spectral markers of the dermo-epidermal junction. J. Spectrosc.27, 421–427 (2012).

Becker, L. et al. Raman microspectroscopy identifies fibrotic tissues in collagen-related disorders via deconvoluted collagen type I spectra. Acta Biomater.162, 278–291 (2023). PubMed

Skieresz-Szewczyk, K., Jackowiak, H., Buchwald, T. & Szybowicz, T. Localization of alpha-keratins and corneous beta proteins in the lingual nail and epithelium on the ventral surface of the lingual apex in the domestic goose (Anser anser f. domestica) by using immunohistochemistry (IHC) and Raman microspectroscopy analysis. Anat. Rec.300, 1361–1368 (2017). PubMed

Skieresz‐Szewczyk, K., Buchwald, T., Szybowicz, M. & Jackowiak, H. Alpha‐keratin and corneous beta protein in the parakeratinized epithelium of the tongue in the domestic goose (Anser anser f. domestica). J. Exp. Zool. B Mol. Dev. Evol.332, 158–166 (2019). PubMed

Fiołka, M. J. et al. Candida albicans cell wall as a target of action for the protein–carbohydrate fraction from coelomic fluid of Dendrobaena veneta. Sci. Rep.10, 16352 (2020). PubMed PMC

Lefevre, T., Rousseau, M. E. & Pezolet, M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J.92, 2885–2895 (2007). PubMed PMC

Church, J. S., Poole, A. J. & Woodhead, A. L. The Raman analysis of films cast from dissolved feather keratin. Vib. Spectrosc.53, 107–111 (2010).

Buckley, M. Species identification of bovine, ovine and porcine type 1 collagen; comparing peptide mass fingerprinting and LC-based proteomics methods. Int. J. Mol. Sci.17, 445 (2016). PubMed PMC

Tillet, E., Franc, J. M., Franc, S. & Garrone, R. The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen. Comp. Biochem. Physiol. B Biochem. Mol. Biol.113, 239–246 (1996). PubMed

Dennell, R. Ortho-tyrosine in an insect cuticle. Nature178, 922–923 (1956). PubMed

Wisniak, J. The history of bromine from discovery to commodity. Indian J. Chem. Technol.9, 263–271 (2002).

Welinder, B. S., Roepstorff, P. & Andersen, S. O. The crustacean cuticle—IV. Isolation and identification of crosslinks from Cancer pagurus cuticle. Comp. Biochem. Physiol. Comp. Biochem.53, 529–533 (1976). PubMed

Louden, D., Inderbitzin, S., Peng, Z. & de Nys, R. Development of a new protocol for testing bath sponge quality. Aquaculture271, 275–285 (2007).

Su, R. S. C., Kim, Y. & Liu, J. C. Resilin: protein-based elastomeric biomaterials. Acta Biomater.10, 1601–1611 (2014). PubMed

Gahlawat, S., Nanda, V. & Shreiber, D. I. Designing collagens to shed light on the multi-scale structure–function mapping of matrix disorders. Matrix Biol.21, 100139 (2024). PubMed PMC

Asgari, M., Latifi, N., Heris, H. K., Vali, H. & Mongeau, L. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci. Rep.7, 1–10 (2017). PubMed PMC

de Alcântara, A. C. S., Felix, L. C., Galvão, D. S., Sollero, P. & Skaf, M. S. The role of the extrafibrillar volume on the mechanical properties of molecular models of mineralized bone microfibrils. ACS Biomater. Sci. Eng.9, 230–245 (2023). PubMed

Kuivaniemi, H. & Tromp, G. Type III collagen (COL3A1): gene and protein structure, tissue distribution, and associated diseases. Gene707, 151–171 (2019). PubMed PMC

Boudko, S. P. et al. Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds. J. Biol. Chem.299, 105318 (2023). PubMed PMC

Galli, R. et al. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues. PLoS ONE9, e110295 (2014). PubMed PMC

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform.10, 1–9 (2009). PubMed PMC

McGinnis, S. & Madden, T. L. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res.32, W20–W25 (2004). PubMed PMC

RCSB PDB. 7CWK: Structure of a Triple-helix Region of Human Collagen Type I. https://www.rcsb.org/structure/7CWK. 10.2210/pdb7CWK/pdb (2021).

RCSB PDB. 8HHI: Crystal Structure of a Triple-helix Region of Human Collagen Type III. https://www.rcsb.org/structure/8HHI. 10.2210/pdb8HHI/pdb (2023).

Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys.153, 44130 (2020). PubMed PMC

Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem.29, 1859–1865 (2008). PubMed

Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem.30, 1545–1614 (2009). PubMed PMC

Lee, J. et al. CHARMM-GUI Input Generator for NAMD. GROMACS. AMBER. OpenMM. and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput.12, 405–413 (2016). PubMed PMC

Jo, S. et al. CHARMM-GUI PDB Manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Adv. Protein Chem. Struct. Biol.96, 235–265 (2014). PubMed PMC

Park, S. J., Kern, N., Brown, T., Lee, J. & Im, W. CHARMM-GUI PDB Manipulator: various PDB structural modifications for biomolecular modeling and simulation. J. Mol. Biol.435, 167995 (2023). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...