The Overexpression of Collagen Receptor DDR1 is Associated With Chromosome Instability and Aneuploidy in Diffuse Large B-Cell Lymphoma

. 2025 May ; 29 (10) : e70318.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40401507

Grantová podpora
13045 Blood Cancer UK - United Kingdom
Cancer Research UK - United Kingdom
DRO: FNOL00098892 Czech Ministry of Health
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund Project ENOCH

Although chronic inflammation is implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL), the mechanisms responsible are unknown. We demonstrate that the overexpression of the collagen receptor, DDR1, correlates with reduced expression of spindle checkpoint genes, with three transcriptional signatures of aneuploidy and with a higher frequency of copy number alterations, pointing to a potential role for DDR1 in the acquisition of aneuploidy in DLBCL. In support of this, we found that collagen treatment of primary germinal centre B cells transduced with DDR1, not only partially recapitulated the aberrant transcriptional programme of DLBCL but also downregulated the expression of CENPE, a mitotic spindle that has a crucial role in preventing chromosome mis-segregation. CENPE expression was also downregulated following DDR1 activation in two B-cell lymphoma lines and was lost in most DDR1-expressing primary tumours. Crucially, the inhibition of CENPE and the overexpression of a constitutively activated DDR1 were able to induce aneuploidy in vitro. Our findings identify a novel mechanistic link between DDR1 signalling and chromosome instability in B cells and provide novel insights into factors driving aneuploidy in DLBCL.

Zobrazit více v PubMed

Tavakkoli M. and Barta S. K., “2024 Update: Advances in the Risk Stratification and Management of Large B‐Cell Lymphoma,” American Journal of Hematology 98, no. 11 (2023): 1791–1805. PubMed

Alizadeh A. A., Eisen M. B., Davis R. E., et al., “Distinct Types of Diffuse Large B‐Cell Lymphoma Identified by Gene Expression Profiling,” Nature 403, no. 6769 (2000): 503–511. PubMed

Chapuy B., Stewart C., Dunford A. J., et al., “Molecular Subtypes of Diffuse Large B Cell Lymphoma Are Associated With Distinct Pathogenic Mechanisms and Outcomes,” Nature Medicine 24, no. 5 (2018): 679–690. PubMed PMC

Wright G. W., Huang D. W., Phelan J. D., et al., “A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma With Therapeutic Implications,” Cancer Cell 37, no. 4 (2020): 551–568 e514. PubMed PMC

Kramer A., Schweizer S., Neben K., et al., “Centrosome Aberrations as a Possible Mechanism for Chromosomal Instability in Non‐Hodgkin's Lymphoma,” Leukemia 17, no. 11 (2003): 2207–2213. PubMed

Bakhoum S. F., Danilova O. V., Kaur P., Levy N. B., and Compton D. A., “Chromosomal Instability Substantiates Poor Prognosis in Patients With Diffuse Large B‐Cell Lymphoma,” Clinical Cancer Research 17, no. 24 (2011): 7704–7711. PubMed PMC

Mizuno Y., Tsukamoto T., Kawata E., et al., “Chromosomal Abnormality Variation Detected by G‐Banding Is Associated With Prognosis of Diffuse Large B‐Cell Lymphoma Treated by R‐CHOP‐Based Therapy,” Cancer Medicine 7, no. 3 (2018): 655–664. PubMed PMC

Musacchio A. and Salmon E. D., “The Spindle‐Assembly Checkpoint in Space and Time,” Nature Reviews. Molecular Cell Biology 8, no. 5 (2007): 379–393. PubMed

Yuen K. W., Montpetit B., and Hieter P., “The Kinetochore and Cancer: What's the Connection?,” Current Opinion in Cell Biology 17, no. 6 (2005): 576–582. PubMed

Weaver B. A., Silk A. D., Montagna C., Verdier‐Pinard P., and Cleveland D. W., “Aneuploidy Acts Both Oncogenically and as a Tumor Suppressor,” Cancer Cell 11, no. 1 (2007): 25–36. PubMed

Chi Y. H., Ward J. M., Cheng L. I., Yasunaga J., and Jeang K. T., “Spindle Assembly Checkpoint and p53 Deficiencies Cooperate for Tumorigenesis in Mice,” International Journal of Cancer 124, no. 6 (2009): 1483–1489. PubMed PMC

Takahara T., Nakamura S., Tsuzuki T., and Satou A., “The Immunology of DLBCL,” Cancers (Basel) 15, no. 3 (2023): 835. PubMed PMC

Lenz G., Wright G., Dave S. S., et al., “Stromal Gene Signatures in Large‐B‐Cell Lymphomas,” New England Journal of Medicine 359, no. 22 (2008): 2313–2323. PubMed PMC

Su H. and Karin M., “Collagen Architecture and Signaling Orchestrate Cancer Development,” Trends Cancer 9, no. 9 (2023): 764–773. PubMed

Necula L., Matei L., Dragu D., et al., “Collagen Family as Promising Biomarkers and Therapeutic Targets in Cancer,” International Journal of Molecular Sciences 23, no. 20 (2022): 12415. PubMed PMC

Su H. and Karin M., “Multifaceted Collagen‐DDR1 Signaling in Cancer,” Trends in Cell Biology 34 (2023): 406–415. PubMed PMC

Vogel W., Gish G. D., Alves F., and Pawson T., “The Discoidin Domain Receptor Tyrosine Kinases Are Activated by Collagen,” Molecular Cell 1, no. 1 (1997): 13–23. PubMed

Henriet E., Sala M., Abou Hammoud A., et al., “Multitasking Discoidin Domain Receptors Are Involved in Several and Specific Hallmarks of Cancer,” Cell Adhesion & Migration 12, no. 4 (2018): 363–377. PubMed PMC

Tian Y., Bai F., and Zhang D., “New Target DDR1: A “Double‐Edged Sword” in Solid Tumors,” Biochimica et Biophysica Acta. Reviews on Cancer 1878, no. 1 (2023): 188829. PubMed

Sun X., Wu B., Chiang H. C., et al., “Tumour DDR1 Promotes Collagen Fibre Alignment to Instigate Immune Exclusion,” Nature 599, no. 7886 (2021): 673–678. PubMed PMC

Lai S. L., Tan M. L., Hollows R. J., et al., “Collagen Induces a More Proliferative, Migratory and Chemoresistant Phenotype in Head and Neck Cancer via DDR1,” Cancers 11, no. 11 (2019): 1766. PubMed PMC

Elser M., Vehlow A., Juratli T. A., and Cordes N., “Simultaneous Inhibition of Discoidin Domain Receptor 1 and Integrin alphaVbeta3 Radiosensitizes Human Glioblastoma Cells,” American Journal of Cancer Research 13, no. 10 (2023): 4597–4612. PubMed PMC

Cader F. Z., Vockerodt M., Bose S., et al., “The EBV Oncogene LMP1 Protects Lymphoma Cells From Cell Death Through the Collagen‐Mediated Activation of DDR1,” Blood 122, no. 26 (2013): 4237–4245. PubMed

Vrzalikova K., Vockerodt M., Leonard S., et al., “Down‐Regulation of BLIMP1alpha by the EBV Oncogene, LMP‐1, Disrupts the Plasma Cell Differentiation Program and Prevents Viral Replication in B Cells: Implications for the Pathogenesis of EBV‐Associated B‐Cell Lymphomas,” Blood 117, no. 22 (2011): 5907–5917. PubMed PMC

Vockerodt M., Morgan S. L., Kuo M., et al., “The Epstein‐Barr Virus Oncoprotein, Latent Membrane Protein‐1, Reprograms Germinal Centre B Cells Towards a Hodgkin's Reed‐Sternberg‐Like Phenotype,” Journal of Pathology 216, no. 1 (2008): 83–92. PubMed

Vockerodt M., Wei W., Nagy E., et al., “Suppression of the LMP2A Target Gene, EGR‐1, Protects Hodgkin's Lymphoma Cells From Entry to the EBV Lytic Cycle,” Journal of Pathology 230, no. 4 (2013): 399–409. PubMed

Ben‐Bassat H., Goldblum N., Mitrani S., et al., “Establishment in Continuous Culture of a New Type of Lymphocyte From a “Burkitt Like” Malignant Lymphoma (Line D.G.‐75),” International Journal of Cancer 19, no. 1 (1977): 27–33. PubMed

Lupino L., Perry T., Margielewska S., et al., “Sphingosine‐1‐Phosphate Signalling Drives an Angiogenic Transcriptional Programme in Diffuse Large B Cell Lymphoma,” Leukemia 33, no. 12 (2019): 2884–2897. PubMed PMC

Hans C. P., Weisenburger D. D., Greiner T. C., et al., “Confirmation of the Molecular Classification of Diffuse Large B‐Cell Lymphoma by Immunohistochemistry Using a Tissue Microarray,” Blood 103, no. 1 (2004): 275–282. PubMed

Morin R. D., Johnson N. A., Severson T. M., et al., “Somatic Mutations Altering EZH2 (Tyr641) in Follicular and Diffuse Large B‐Cell Lymphomas of Germinal‐Center Origin,” Nature Genetics 42, no. 2 (2010): 181–185. PubMed PMC

Morin R. D., Mendez‐Lago M., Mungall A. J., et al., “Frequent Mutation of Histone‐Modifying Genes in Non‐Hodgkin Lymphoma,” Nature 476, no. 7360 (2011): 298–303. PubMed PMC

Beguelin W., Popovic R., Teater M., et al., “EZH2 Is Required for Germinal Center Formation and Somatic EZH2 Mutations Promote Lymphoid Transformation,” Cancer Cell 23, no. 5 (2013): 677–692. PubMed PMC

Care M. A., Westhead D. R., and Tooze R. M., “Gene Expression Meta‐Analysis Reveals Immune Response Convergence on the IFNgamma‐STAT1‐IRF1 Axis and Adaptive Immune Resistance Mechanisms in Lymphoma,” Genome Medicine 7, no. 1 (2015): 96. PubMed PMC

Sheltzer J. M., “A Transcriptional and Metabolic Signature of Primary Aneuploidy Is Present in Chromosomally Unstable Cancer Cells and Informs Clinical Prognosis,” Cancer Research 73, no. 21 (2013): 6401–6412. PubMed PMC

Durrbaum M., Kuznetsova A. Y., Passerini V., et al., “Unique Features of the Transcriptional Response to Model Aneuploidy in Human Cells,” BMC Genomics 15 (2014): 139. PubMed PMC

Reddy A., Zhang J., Davis N. S., et al., “Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma,” Cell 171, no. 2 (2017): 481–494 e415. PubMed PMC

Mao Y., Desai A., and Cleveland D. W., “Microtubule Capture by CENP‐E Silences BubR1‐Dependent Mitotic Checkpoint Signaling,” Journal of Cell Biology 170, no. 6 (2005): 873–880. PubMed PMC

Bennett A., Bechi B., Tighe A., Thompson S., Procter D. J., and Taylor S. S., “Cenp‐E Inhibitor GSK923295: Novel Synthetic Route and Use as a Tool to Generate Aneuploidy,” Oncotarget 6, no. 25 (2015): 20921–20932. PubMed PMC

Giotti B., Joshi A., and Freeman T. C., “Meta‐Analysis Reveals Conserved Cell Cycle Transcriptional Network Across Multiple Human Cell Types,” BMC Genomics 18, no. 1 (2017): 30. PubMed PMC

Vogel C., Kienitz A., Hofmann I., Muller R., and Bastians H., “Crosstalk of the Mitotic Spindle Assembly Checkpoint With p53 to Prevent Polyploidy,” Oncogene 23, no. 41 (2004): 6845–6853. PubMed

Xiao Q., Jiang Y., Liu Q., et al., “Minor Type IV Collagen Alpha5 Chain Promotes Cancer Progression Through Discoidin Domain Receptor‐1,” PLoS Genetics 11, no. 5 (2015): e1005249. PubMed PMC

Rammal H., Saby C., Magnien K., et al., “Discoidin Domain Receptors: Potential Actors and Targets in Cancer,” Frontiers in Pharmacology 7 (2016): 55. PubMed PMC

Putkey F. R., Cramer T., Morphew M. K., et al., “Unstable Kinetochore‐Microtubule Capture and Chromosomal Instability Following Deletion of CENP‐E,” Developmental Cell 3, no. 3 (2002): 351–365. PubMed

McEwen B. F., Chan G. K., Zubrowski B., et al., “CENP‐E Is Essential for Reliable Bioriented Spindle Attachment, but Chromosome Alignment Can Be Achieved via Redundant Mechanisms in Mammalian Cells,” Molecular Biology of the Cell 12, no. 9 (2001): 2776–2789. PubMed PMC

Weaver B. A., Bonday Z. Q., Putkey F. R., et al., “Centromere‐Associated Protein‐E Is Essential for the Mammalian Mitotic Checkpoint to Prevent Aneuploidy due to Single Chromosome Loss,” Journal of Cell Biology 162, no. 4 (2003): 551–563. PubMed PMC

Dagamajalu S., Rex D. A. B., Suchitha G. P., et al., “A Network Map of Discoidin Domain Receptor 1(DDR1)‐Mediated Signaling in Pathological Conditions,” Journal of Cell Communication and Signaling 17, no. 3 (2023): 1081–1088, 10.1007/s12079-022-00714-x. PubMed DOI PMC

Tabnak P., Hasanzade Bashkandi A., Ebrahimnezhad M., and Soleimani M., “Forkhead Box Transcription Factors (FOXOs and FOXM1) in Glioma: From Molecular Mechanisms to Therapeutics,” Cancer Cell International 23, no. 1 (2023): 238. PubMed PMC

Lien E. C., Lyssiotis C. A., and Cantley L. C., “Metabolic Reprogramming by the PI3K‐Akt‐mTOR Pathway in Cancer,” Recent Results in Cancer Research 207 (2016): 39–72. PubMed

Maurer U., Preiss F., Brauns‐Schubert P., Schlicher L., and Charvet C., “GSK‐3—At the Crossroads of Cell Death and Survival,” Journal of Cell Science 127, no. Pt 7 (2014): 1369–1378. PubMed

Xia Y. and Zhang X., “The Spectrum of MYC Alterations in Diffuse Large B‐Cell Lymphoma,” Acta Haematologica 143, no. 6 (2020): 520–528. PubMed

Uddin S., Hussain A. R., Ahmed M., et al., “Overexpression of FoxM1 Offers a Promising Therapeutic Target in Diffuse Large B‐Cell Lymphoma,” Haematologica 97, no. 7 (2012): 1092–1100. PubMed PMC

Shan L., Zhao M., Lu Y., et al., “CENPE Promotes Lung Adenocarcinoma Proliferation and Is Directly Regulated by FOXM1,” International Journal of Oncology 55, no. 1 (2019): 257–266. PubMed

Balamuth N. J., Wood A., Wang Q., et al., “Serial Transcriptome Analysis and Cross‐Species Integration Identifies Centromere‐Associated Protein E as a Novel Neuroblastoma Target,” Cancer Research 70, no. 7 (2010): 2749–2758. PubMed PMC

Silk A. D., Zasadil L. M., Holland A. J., Vitre B., Cleveland D. W., and Weaver B. A., “Chromosome Missegregation Rate Predicts Whether Aneuploidy Will Promote or Suppress Tumors,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 44 (2013): E4134–E4141. PubMed PMC

Monti S., Chapuy B., Takeyama K., et al., “Integrative Analysis Reveals an Outcome‐Associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B Cell Lymphoma,” Cancer Cell 22 (2012): 359–372. PubMed PMC

Tsukasaki K., Krebs J., Nagai K., et al., “Comparative Genomic Hybridization Analysis in Adult T‐Cell Leukemia/Lymphoma: Correlation with Clinical Course,” Blood 97 (2001): 3875–3881. PubMed

Tzankov A., Gschwendtner A., Augustin F., et al., “Diffuse Large B‐Cell Lymphoma With Overexpression of Cyclin e Substantiates Poor Standard Treatment Response and Inferior Outcome,” Clinical Cancer Research 12, no. 7 Pt 1 (2006): 2125–2132. PubMed

Rickinson A. B., “Co‐Infections, Inflammation and Oncogenesis: Future Directions for EBV Research,” Seminars in Cancer Biology 26 (2014): 99–115. PubMed

Campo E., Jaffe E. S., Cook J. R., et al., “The International Consensus Classification of Mature Lymphoid Neoplasms: A Report From the Clinical Advisory Committee,” Blood 140, no. 11 (2022): 1229–1253. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...