hnRNP A1 induces aberrant CFTR exon 9 splicing via a newly discovered ESS element

. 2025 Sep ; 8 (9) : . [epub] 20250616

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40523798

RNA-protein interactions play a key role in the aberrant splicing of CFTR exon 9. Exon 9 skipping leads to the production of a nonfunctional chloride channel associated with severe forms of cystic fibrosis. The missplicing depends on TDP-43 binding to an extended UG-rich binding site upstream of CFTR exon 9 3' splicing site (3'ss) and is associated with concomitant hnRNP A1 recruitment. Although TDP-43 is the dominant inhibitor of exon 9 inclusion, the role of hnRNP A1, a protein with two RNA recognition motifs, remained unclear. In this work, we have studied the interaction between hnRNP A1 and the CFTR pre-mRNA using NMR spectroscopy and Isothermal Titration Calorimetry. The affinities are submicromolar, and Isothermal Titration Calorimetry data suggest complexes with a 1:1 stoichiometry. NMR titrations reveal that hnRNP A1 interacts with model CTFR 3'ss sequences in a fast exchange regime at the NMR timescale. Splicing assays finally show that this hnRNP A1 binding site represents a previously unknown exonic splicing silencer element. Together, our results shed light on the mechanism of aberrant CFTR exon 9 splicing.

Zobrazit více v PubMed

Ayala YM, Pagani F, Baralle FE (2006) Tdp43 depletion rescues aberrant cftr exon 9 skipping. FEBS Lett 580: 1339–1344. 10.1016/j.febslet.2006.01.052 PubMed DOI

Barraud P, Allain FHT (2013) Solution structure of the two rna recognition motifs of hnrnp a1 using segmental isotope labeling: How the relative orientation between rrms influences the nucleic acid binding topology. J Biomol NMR 55: 119–138. 10.1007/s10858-012-9696-4 PubMed DOI

Beusch I, Barraud P, Moursy A, Cléry A, Allain FHT (2017) Tandem hnrnp a1 rna recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. Elife 6: e25736. 10.7554/eLife.25736 PubMed DOI PMC

Bruun GH, Doktor TK, Borch-Jensen J, Masuda A, Krainer AR, Ohno K, Andresen BS (2016) Global identification of hnrnp a1 binding sites for sso-based splicing modulation. BMC Biol 14: 54. 10.1186/s12915-016-0279-9 PubMed DOI PMC

Buratti E, Baralle FE (2001) Characterization and functional implications of the rna binding properties of nuclear factor tdp-43, a novel splicing regulator of cftr exon 9. J Biol Chem 276: 36337–36343. 10.1074/jbc.M104236200 PubMed DOI

Buratti E, Dörk T, Zuccato E, Pagani F, Romano M, Baralle FE (2001) Nuclear factor tdp-43 and sr proteins promote in vitro and in vivo cftr exon 9 skipping. EMBO J 20: 1774–1784. 10.1093/emboj/20.7.1774 PubMed DOI PMC

Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) Tdp-43 binds heterogeneous nuclear ribonucleoprotein a/b through its c-terminal tail: An important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280: 37572–37584. 10.1074/jbc.M505557200 PubMed DOI

Burd CG, Dreyfuss G (1994) Rna binding specificity of hnrnp a1: Significance of hnrnp a1 high-affinity binding sites in pre-mrna splicing. EMBO J 13: 1197–1204. 10.1002/j.1460-2075.1994.tb06369.x PubMed DOI PMC

Castellani C, Cuppens H, Macek M, Jr., Cassiman JJ, Kerem E, Durie P, Tullis E, Assael BM, Bombieri C, Brown A, et al. (2008) Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros 7: 179–196. 10.1016/j.jcf.2008.03.009 PubMed DOI PMC

Cooper TA, Wan L, Dreyfuss G (2009) Rna and disease. Cell 136: 777–793. 10.1016/j.cell.2009.02.011 PubMed DOI PMC

D'Ambrogio A, Buratti E, Stuani C, Guarnaccia C, Romano M, Ayala YM, Baralle FE (2009) Functional mapping of the interaction between tdp-43 and hnrnp a2 in vivo. Nucleic Acids Res 37: 4116–4126. 10.1093/nar/gkp342 PubMed DOI PMC

Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM (1999) Crystal structure of the two-rrm domain of hnrnp a1 (up1) complexed with single-stranded telomeric DNA. Genes Dev 13: 1102–1115. 10.1101/gad.13.9.1102 PubMed DOI PMC

Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG (1993) Hnrnp proteins and the biogenesis of mrna. Annu Rev Biochem 62: 289–321. 10.1146/annurev.bi.62.070193.001445 PubMed DOI

Easton LE, Shibata Y, Lukavsky PJ (2010) Rapid, nondenaturing rna purification using weak anion-exchange fast performance liquid chromatography. RNA 16: 647–653. 10.1261/rna.1862210 PubMed DOI PMC

Groman JD, Hefferon TW, Casals T, Bassas L, Estivill X, Des Georges M, Guittard C, Koudova M, Fallin MD, Nemeth K, et al. (2004) Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am J Hum Genet 74: 176–179. 10.1086/381001 PubMed DOI PMC

Grønning AGB, Doktor TK, Larsen SJ, Petersen USS, Holm LL, Bruun GH, Hansen MB, Hartung AM, Baumbach J, Andresen BS (2020) Deepclip: Predicting the effect of mutations on protein-rna binding with deep learning. Nucleic Acids Res 48: 7099–7118. 10.1093/nar/gkaa530 PubMed DOI PMC

Jean-Philippe J, Paz S, Caputi M (2013) Hnrnp a1: The swiss army knife of gene expression. Int J Mol Sci 14: 18999–19024. 10.3390/ijms140918999 PubMed DOI PMC

Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073–1080. 10.1126/science.2570460 PubMed DOI

Kooshapur H, Choudhury NR, Simon B, Mühlbauer M, Jussupow A, Fernandez N, Jones AN, Dallmann A, Gabel F, Camilloni C, et al. (2018) Structural basis for terminal loop recognition and stimulation of pri-mirna-18a processing by hnrnp a1. Nat Commun 9: 2479. 10.1038/s41467-018-04871-9 PubMed DOI PMC

Kuo PH, Doudeva LG, Wang YT, Shen CK, Yuan HS (2009) Structural insights into tdp-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 37: 1799–1808. 10.1093/nar/gkp013 PubMed DOI PMC

Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mrna splicing. Annu Rev Biochem 84: 291–323. 10.1146/annurev-biochem-060614-034316 PubMed DOI PMC

Liu X, Ishizuka T, Bao HL, Wada K, Takeda Y, Iida K, Nagasawa K, Yang D, Xu Y (2017) Structure-dependent binding of hnrnpa1 to telomere rna. J Am Chem Soc 139: 7533–7539. 10.1021/jacs.7b01599 PubMed DOI PMC

Lukavsky PJ, Daujotyte D, Tollervey JR, Ule J, Stuani C, Buratti E, Baralle FE, Damberger FF, Allain FHT (2013) Molecular basis of ug-rich rna recognition by the human splicing factor tdp-43. Nat Struct Mol Biol 20: 1443–1449. 10.1038/nsmb.2698 PubMed DOI

Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: Towards a cellular code. Nat Rev Mol Cell Biol 6: 386–398. 10.1038/nrm1645 PubMed DOI

Muro AF, Caputi M, Pariyarath R, Pagani F, Buratti E, Baralle FE (1999) Regulation of fibronectin eda exon alternative splicing: Possible role of rna secondary structure for enhancer display. Mol Cell Biol 19: 2657–2671. 10.1128/MCB.19.4.2657 PubMed DOI PMC

Niksic M, Romano M, Buratti E, Pagani F, Baralle FE (1999) Functional analysis of cis-acting elements regulating the alternative splicing of human cftr exon 9. Hum Mol Genet 8: 2339–2349. 10.1093/hmg/8.13.2339 PubMed DOI

Okunola HL, Krainer AR (2009) Cooperative-binding and splicing-repressive properties of hnrnp a1. Mol Cell Biol 29: 5620–5631. 10.1128/MCB.01678-08 PubMed DOI PMC

Pagani F, Buratti E, Stuani C, Romano M, Zuccato E, Niksic M, Giglio L, Faraguna D, Baralle FE (2000) Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J Biol Chem 275: 21041–21047. 10.1074/jbc.M910165199 PubMed DOI

Pagani F, Buratti E, Stuani C, Baralle FE (2003) Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J Biol Chem 278: 26580–26588. 10.1074/jbc.M212813200 PubMed DOI

Pollard TD (2010) A guide to simple and informative binding assays. Mol Biol Cell 21: 4061–4067. 10.1091/mbc.E10-08-0683 PubMed DOI PMC

Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, et al. (2013) A compendium of rna-binding motifs for decoding gene regulation. Nature 499: 172–177. 10.1038/nature12311 PubMed DOI PMC

Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. (1989) Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245: 1066–1073. 10.1126/science.2475911 PubMed DOI

Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et al. (1989) Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245: 1059–1065. 10.1126/science.2772657 PubMed DOI

Schmidt BZ, Haaf JB, Leal T, Noel S (2016) Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: Current perspectives. Clin Pharmacol 8: 127–140. 10.2147/CPAA.S100759 PubMed DOI PMC

Singh RK, Cooper TA (2012) Pre-mrna splicing in disease and therapeutics. Trends Mol Med 18: 472–482. 10.1016/j.molmed.2012.06.006 PubMed DOI PMC

Wahl MC, Will CL, Lührmann R (2009) The spliceosome: Design principles of a dynamic rnp machine. Cell 136: 701–718. 10.1016/j.cell.2009.02.009 PubMed DOI

Wang Z, Burge CB (2008) Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA 14: 802–813. 10.1261/rna.876308 PubMed DOI PMC

Zengerling S, Tsui LC, Grzeschik KH, Olek K, Riordan JR, Buchwald M (1987) Mapping of DNA markers linked to the cystic fibrosis locus on the long arm of chromosome 7. Am J Hum Genet 40: 228–236. PubMed PMC

Zlobina M, Sedo O, Chou MY, Slepankova L, Lukavsky PJ (2016) Efficient large-scale preparation and purification of short single-stranded rna oligonucleotides. Biotechniques 60: 75–83. 10.2144/000114383 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...