hnRNP A1 induces aberrant CFTR exon 9 splicing via a newly discovered ESS element
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články
PubMed
40523798
PubMed Central
PMC12171016
DOI
10.26508/lsa.202402720
PII: 8/9/e202402720
Knihovny.cz E-zdroje
- MeSH
- alternativní sestřih genetika MeSH
- cystická fibróza genetika MeSH
- exony genetika MeSH
- heterogenní jaderný ribonukleoprotein A1 * metabolismus genetika MeSH
- lidé MeSH
- místa sestřihu RNA genetika MeSH
- prekurzory RNA genetika metabolismus MeSH
- protein CFTR * genetika metabolismus MeSH
- sestřih RNA * genetika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CFTR protein, human MeSH Prohlížeč
- heterogenní jaderný ribonukleoprotein A1 * MeSH
- hnRNPA1 protein, human MeSH Prohlížeč
- místa sestřihu RNA MeSH
- prekurzory RNA MeSH
- protein CFTR * MeSH
RNA-protein interactions play a key role in the aberrant splicing of CFTR exon 9. Exon 9 skipping leads to the production of a nonfunctional chloride channel associated with severe forms of cystic fibrosis. The missplicing depends on TDP-43 binding to an extended UG-rich binding site upstream of CFTR exon 9 3' splicing site (3'ss) and is associated with concomitant hnRNP A1 recruitment. Although TDP-43 is the dominant inhibitor of exon 9 inclusion, the role of hnRNP A1, a protein with two RNA recognition motifs, remained unclear. In this work, we have studied the interaction between hnRNP A1 and the CFTR pre-mRNA using NMR spectroscopy and Isothermal Titration Calorimetry. The affinities are submicromolar, and Isothermal Titration Calorimetry data suggest complexes with a 1:1 stoichiometry. NMR titrations reveal that hnRNP A1 interacts with model CTFR 3'ss sequences in a fast exchange regime at the NMR timescale. Splicing assays finally show that this hnRNP A1 binding site represents a previously unknown exonic splicing silencer element. Together, our results shed light on the mechanism of aberrant CFTR exon 9 splicing.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
International Centre for Genetic Engineering and Biotechnology Trieste Italy
Zobrazit více v PubMed
Ayala YM, Pagani F, Baralle FE (2006) Tdp43 depletion rescues aberrant cftr exon 9 skipping. FEBS Lett 580: 1339–1344. 10.1016/j.febslet.2006.01.052 PubMed DOI
Barraud P, Allain FHT (2013) Solution structure of the two rna recognition motifs of hnrnp a1 using segmental isotope labeling: How the relative orientation between rrms influences the nucleic acid binding topology. J Biomol NMR 55: 119–138. 10.1007/s10858-012-9696-4 PubMed DOI
Beusch I, Barraud P, Moursy A, Cléry A, Allain FHT (2017) Tandem hnrnp a1 rna recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. Elife 6: e25736. 10.7554/eLife.25736 PubMed DOI PMC
Bruun GH, Doktor TK, Borch-Jensen J, Masuda A, Krainer AR, Ohno K, Andresen BS (2016) Global identification of hnrnp a1 binding sites for sso-based splicing modulation. BMC Biol 14: 54. 10.1186/s12915-016-0279-9 PubMed DOI PMC
Buratti E, Baralle FE (2001) Characterization and functional implications of the rna binding properties of nuclear factor tdp-43, a novel splicing regulator of cftr exon 9. J Biol Chem 276: 36337–36343. 10.1074/jbc.M104236200 PubMed DOI
Buratti E, Dörk T, Zuccato E, Pagani F, Romano M, Baralle FE (2001) Nuclear factor tdp-43 and sr proteins promote in vitro and in vivo cftr exon 9 skipping. EMBO J 20: 1774–1784. 10.1093/emboj/20.7.1774 PubMed DOI PMC
Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) Tdp-43 binds heterogeneous nuclear ribonucleoprotein a/b through its c-terminal tail: An important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280: 37572–37584. 10.1074/jbc.M505557200 PubMed DOI
Burd CG, Dreyfuss G (1994) Rna binding specificity of hnrnp a1: Significance of hnrnp a1 high-affinity binding sites in pre-mrna splicing. EMBO J 13: 1197–1204. 10.1002/j.1460-2075.1994.tb06369.x PubMed DOI PMC
Castellani C, Cuppens H, Macek M, Jr., Cassiman JJ, Kerem E, Durie P, Tullis E, Assael BM, Bombieri C, Brown A, et al. (2008) Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros 7: 179–196. 10.1016/j.jcf.2008.03.009 PubMed DOI PMC
Cooper TA, Wan L, Dreyfuss G (2009) Rna and disease. Cell 136: 777–793. 10.1016/j.cell.2009.02.011 PubMed DOI PMC
D'Ambrogio A, Buratti E, Stuani C, Guarnaccia C, Romano M, Ayala YM, Baralle FE (2009) Functional mapping of the interaction between tdp-43 and hnrnp a2 in vivo. Nucleic Acids Res 37: 4116–4126. 10.1093/nar/gkp342 PubMed DOI PMC
Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM (1999) Crystal structure of the two-rrm domain of hnrnp a1 (up1) complexed with single-stranded telomeric DNA. Genes Dev 13: 1102–1115. 10.1101/gad.13.9.1102 PubMed DOI PMC
Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG (1993) Hnrnp proteins and the biogenesis of mrna. Annu Rev Biochem 62: 289–321. 10.1146/annurev.bi.62.070193.001445 PubMed DOI
Easton LE, Shibata Y, Lukavsky PJ (2010) Rapid, nondenaturing rna purification using weak anion-exchange fast performance liquid chromatography. RNA 16: 647–653. 10.1261/rna.1862210 PubMed DOI PMC
Groman JD, Hefferon TW, Casals T, Bassas L, Estivill X, Des Georges M, Guittard C, Koudova M, Fallin MD, Nemeth K, et al. (2004) Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am J Hum Genet 74: 176–179. 10.1086/381001 PubMed DOI PMC
Grønning AGB, Doktor TK, Larsen SJ, Petersen USS, Holm LL, Bruun GH, Hansen MB, Hartung AM, Baumbach J, Andresen BS (2020) Deepclip: Predicting the effect of mutations on protein-rna binding with deep learning. Nucleic Acids Res 48: 7099–7118. 10.1093/nar/gkaa530 PubMed DOI PMC
Jean-Philippe J, Paz S, Caputi M (2013) Hnrnp a1: The swiss army knife of gene expression. Int J Mol Sci 14: 18999–19024. 10.3390/ijms140918999 PubMed DOI PMC
Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073–1080. 10.1126/science.2570460 PubMed DOI
Kooshapur H, Choudhury NR, Simon B, Mühlbauer M, Jussupow A, Fernandez N, Jones AN, Dallmann A, Gabel F, Camilloni C, et al. (2018) Structural basis for terminal loop recognition and stimulation of pri-mirna-18a processing by hnrnp a1. Nat Commun 9: 2479. 10.1038/s41467-018-04871-9 PubMed DOI PMC
Kuo PH, Doudeva LG, Wang YT, Shen CK, Yuan HS (2009) Structural insights into tdp-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 37: 1799–1808. 10.1093/nar/gkp013 PubMed DOI PMC
Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mrna splicing. Annu Rev Biochem 84: 291–323. 10.1146/annurev-biochem-060614-034316 PubMed DOI PMC
Liu X, Ishizuka T, Bao HL, Wada K, Takeda Y, Iida K, Nagasawa K, Yang D, Xu Y (2017) Structure-dependent binding of hnrnpa1 to telomere rna. J Am Chem Soc 139: 7533–7539. 10.1021/jacs.7b01599 PubMed DOI PMC
Lukavsky PJ, Daujotyte D, Tollervey JR, Ule J, Stuani C, Buratti E, Baralle FE, Damberger FF, Allain FHT (2013) Molecular basis of ug-rich rna recognition by the human splicing factor tdp-43. Nat Struct Mol Biol 20: 1443–1449. 10.1038/nsmb.2698 PubMed DOI
Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: Towards a cellular code. Nat Rev Mol Cell Biol 6: 386–398. 10.1038/nrm1645 PubMed DOI
Muro AF, Caputi M, Pariyarath R, Pagani F, Buratti E, Baralle FE (1999) Regulation of fibronectin eda exon alternative splicing: Possible role of rna secondary structure for enhancer display. Mol Cell Biol 19: 2657–2671. 10.1128/MCB.19.4.2657 PubMed DOI PMC
Niksic M, Romano M, Buratti E, Pagani F, Baralle FE (1999) Functional analysis of cis-acting elements regulating the alternative splicing of human cftr exon 9. Hum Mol Genet 8: 2339–2349. 10.1093/hmg/8.13.2339 PubMed DOI
Okunola HL, Krainer AR (2009) Cooperative-binding and splicing-repressive properties of hnrnp a1. Mol Cell Biol 29: 5620–5631. 10.1128/MCB.01678-08 PubMed DOI PMC
Pagani F, Buratti E, Stuani C, Romano M, Zuccato E, Niksic M, Giglio L, Faraguna D, Baralle FE (2000) Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J Biol Chem 275: 21041–21047. 10.1074/jbc.M910165199 PubMed DOI
Pagani F, Buratti E, Stuani C, Baralle FE (2003) Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J Biol Chem 278: 26580–26588. 10.1074/jbc.M212813200 PubMed DOI
Pollard TD (2010) A guide to simple and informative binding assays. Mol Biol Cell 21: 4061–4067. 10.1091/mbc.E10-08-0683 PubMed DOI PMC
Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, et al. (2013) A compendium of rna-binding motifs for decoding gene regulation. Nature 499: 172–177. 10.1038/nature12311 PubMed DOI PMC
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. (1989) Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245: 1066–1073. 10.1126/science.2475911 PubMed DOI
Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et al. (1989) Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245: 1059–1065. 10.1126/science.2772657 PubMed DOI
Schmidt BZ, Haaf JB, Leal T, Noel S (2016) Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: Current perspectives. Clin Pharmacol 8: 127–140. 10.2147/CPAA.S100759 PubMed DOI PMC
Singh RK, Cooper TA (2012) Pre-mrna splicing in disease and therapeutics. Trends Mol Med 18: 472–482. 10.1016/j.molmed.2012.06.006 PubMed DOI PMC
Wahl MC, Will CL, Lührmann R (2009) The spliceosome: Design principles of a dynamic rnp machine. Cell 136: 701–718. 10.1016/j.cell.2009.02.009 PubMed DOI
Wang Z, Burge CB (2008) Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA 14: 802–813. 10.1261/rna.876308 PubMed DOI PMC
Zengerling S, Tsui LC, Grzeschik KH, Olek K, Riordan JR, Buchwald M (1987) Mapping of DNA markers linked to the cystic fibrosis locus on the long arm of chromosome 7. Am J Hum Genet 40: 228–236. PubMed PMC
Zlobina M, Sedo O, Chou MY, Slepankova L, Lukavsky PJ (2016) Efficient large-scale preparation and purification of short single-stranded rna oligonucleotides. Biotechniques 60: 75–83. 10.2144/000114383 PubMed DOI
PDB
2lyv