The two stork species that nest in Central Europe, Ciconia ciconia and Ciconia nigra, have been repeatedly shown to host the digenetic trematode Cathaemasia hians (Rudolphi, 1809) in their esophagus and muscular stomach. These host species differ in their habitat and food preferences, and the morphologic characters of C. hians isolates ex Ci. nigra and Ci. ciconia are not identical. These differences led to a previous proposal of two subspecies, Cathaemasia hians longivitellata Macko, 1960, and Cathaemasia hians hians Macko, 1960. We hypothesize that the Cathaemasia hians isolates ex Ci. nigra and Ci. ciconia represent two independent species. Therefore, in the present study, we performed the first molecular analyses of C. hians individuals that were consistent with the diagnosis of C. hians hians (ex Ci. nigra) and C. hians longivitellata (ex Ci. ciconia). The combined molecular and comparative morphological analyses of the central European Cathaemasia individuals ex Ci. nigra and Ci. ciconia led to the proposal of a split of C. hians into C. hians sensu stricto (formerly C. hians hians) and C. longivitellata sp. n. (formerly C. hians longivitellata). Morphological analyses confirmed that the length of the vitellaria is the key identification feature of the two previously mentioned species. Both Cathaemasia spp. substantially differ at the molecular level and have strict host specificity, which might be related to differences in the habitat and food preferences of the two stork species.
The parasite fauna of Neotropical reptiles is poorly known, and the number of parasites described in these hosts does not seem to correspond to the actual species diversity in this zoogeographical region. This also applies to tapeworms such as proteocephalids, which are rarely found in reptiles and are strictly specific to their reptilian hosts. In the present paper, three new species of Ophiotaenia La Rue, 1911 are described from three dipsadine snake species (Squamata: Colubridae) in Ecuador, namely O. jeanmarctouzeti sp. n. from the Neotropical blunt-headed treesnake Imantodes cenchoa (Linnaeus), O. barraganae sp. n. from the beautiful calico snake Oxyrhopus formosus (Wied-Neuwied) and O. velascoae sp. n. from the forest flame snake Oxyrhopus petolarius (Linnaeus). The new species are characterised by type 1 uterine development, the number and distribution of testes, the size of the scolex and other metric features. As no molecular data are available on the specimens collected more than 35 years ago, the phylogenetic relationships of the individual taxa are not known.
- MeSH
- Cestoda * klasifikace izolace a purifikace MeSH
- cestodózy veterinární parazitologie epidemiologie MeSH
- Colubridae * parazitologie MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Ekvádor MeSH
The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome 1, such as oligomer frequencies, GC content, and differences in codon usage. Viruses, however, are obligate intracellular parasites that are dependent on their host cells for replication, and information about genomic signatures in viruses has hitherto been sparse.Here, we investigate the presence and specificity of genomic signatures in 2,768 eukaryotic viral species from 105 viral families, aiming to illuminate dependencies and selective pressures in viral genome evolution. We demonstrate that most viruses have highly specific genomic signatures that often also differ significantly between species within the same family. The species-specificity is most prominent among dsDNA viruses and viruses with large genomes. We also reveal consistent dissimilarities between viral genomic signatures and those of their host cells, although some viruses present slight similarities, which may be explained by genetic adaptation to their native hosts. Our results suggest that significant evolutionary selection pressures act upon viral genomes to shape and preserve their genomic signatures, which may have implications for the field of synthetic biology in the construction of live attenuated vaccines and viral vectors.
PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
- MeSH
- druhová specificita MeSH
- lidé MeSH
- malá interferující RNA * metabolismus genetika MeSH
- myši MeSH
- Piwi-interagující RNA MeSH
- psi MeSH
- savci * genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
The pathogenic fungus Aspergillus fumigatus utilizes a cyclic ferrioxamine E (FOXE) siderophore to acquire iron from the host. Biomimetic FOXE analogues were labeled with gallium-68 for molecular imaging with PET. [68Ga]Ga(III)-FOXE analogues were internalized in A. fumigatus cells via Sit1. Uptake of [68Ga]Ga(III)-FOX 2-5, the most structurally alike analogue to FOXE, was high by both A. fumigatus and bacterial Staphylococcus aureus. However, altering the ring size provoked species-specific uptake between these two microbes: ring size shortening by one methylene unit (FOX 2-4) increased uptake by A. fumigatus compared to that by S. aureus, whereas lengthening the ring (FOX 2-6 and 3-5) had the opposite effect. These results were consistent both in vitro and in vivo, including PET imaging in infection models. Overall, this study provided valuable structural insights into the specificity of siderophore uptake and, for the first time, opened up ways for selective targeting and imaging of microbial pathogens by siderophore derivatization.
- MeSH
- Aspergillus fumigatus * metabolismus chemie MeSH
- aspergilóza * diagnostické zobrazování mikrobiologie MeSH
- biomimetické materiály chemie metabolismus MeSH
- cyklické peptidy MeSH
- deferoxamin chemie MeSH
- druhová specificita MeSH
- myši MeSH
- pozitronová emisní tomografie * metody MeSH
- radioizotopy galia * chemie MeSH
- siderofory * chemie metabolismus MeSH
- Staphylococcus aureus * metabolismus MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.
- MeSH
- angiotensin-konvertující enzym 2 genetika MeSH
- Chiroptera * virologie MeSH
- druhová specificita MeSH
- glykoprotein S, koronavirus metabolismus MeSH
- lidé MeSH
- replikace viru * MeSH
- SARS-CoV-2 * fyziologie MeSH
- virové receptory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Reef-building corals are endangered animals with a complex colonial organization. Physiological mechanisms connecting multiple polyps and integrating them into a coral colony are still enigmatic. Using live imaging, particle tracking, and mathematical modeling, we reveal how corals connect individual polyps and form integrated polyp groups via species-specific, complex, and stable networks of currents at their surface. These currents involve surface mucus of different concentrations, which regulate joint feeding of the colony. Inside the coral, within the gastrovascular system, we expose the complexity of bidirectional branching streams that connect individual polyps. This system of canals extends the surface area by 4-fold and might improve communication, nutrient supply, and symbiont transfer. Thus, individual polyps integrate via complex liquid dynamics on the surface and inside the colony.
- MeSH
- druhová specificita MeSH
- korálnatci * fyziologie MeSH
- korálové útesy MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Glucagon-like-peptide 2 (GLP-2) is an endogenous enteroendocrine physiological trophic peptide. Glepaglutide is a novel long-acting GLP-2 analog under development for the treatment of patients with Short Bowel Syndrome (SBS). The objective of this work was to compare the small intestinal trophic effects in both genders following short (1 week) versus long-term (26-39 weeks) GLP-2 treatment in Wistar rats and Beagle dogs. Following both short- and long-term treatment with glepaglutide, a significant dose-dependent intestinotrophic effect was seen in both genders and species. At all doses increased length and weight of the small intestine as well as macroscopic thickening and villous hypertrophy were noted in all segments of the small intestine, without any differences between genders. The findings were still present following a 6-week recovery period, indicating long-acting intestinotrophic effects of glepaglutide. These studies demonstrate that a long-acting GLP-2 analogue (glepaglutide) has a fast onset and long duration of intestinotrophic action with similar profile in both genders and species (rat and dog).
- MeSH
- druhová specificita MeSH
- glukagonu podobný peptid 2 * MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- peptidy farmakologie MeSH
- potkani Wistar MeSH
- psi MeSH
- syndrom krátkého střeva * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The ability of MALDI-TOF for the identification of nontuberculous mycobacteria (NTM) has improved recently thanks to updated databases and optimized protein extraction procedures. Few multicentre studies on the reproducibility of MALDI-TOF have been performed so far, none on mycobacteria. The aim of this study was to evaluate the reproducibility of MALDI-TOF for the identification of NTM in 15 laboratories in 9 European countries. A total of 98 NTM clinical isolates were grown on Löwenstein-Jensen. Biomass was collected in tubes with water and ethanol, anonymized and sent out to the 15 participating laboratories. Isolates were identified using MALDI Biotyper (Bruker Daltonics). Up to 1330 MALDI-TOF identifications were collected in the study. A score ≥ 1.6 was obtained for 100% of isolates in 5 laboratories (68.2-98.6% in the other). Species-level identification provided by MALDI-TOF was 100% correct in 8 centres and 100% correct to complex-level in 12 laboratories. In most cases, the misidentifications obtained were associated with closely related species. The variability observed for a few isolates could be due to variations in the protein extraction procedure or to MALDI-TOF system status in each centre. In conclusion, MALDI-TOF showed to be a highly reproducible method and suitable for its implementation for NTM identification.
- MeSH
- druhová specificita MeSH
- lidé MeSH
- netuberkulózní mykobakterie klasifikace izolace a purifikace MeSH
- reprodukovatelnost výsledků MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 μM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 μM. Helenalin inhibited CYP3A4 (IC50 = 18.7 μM) and CYP3A5 (IC50 = 62.6 μM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 μM, KI = 6.7 μM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.
- MeSH
- druhová specificita MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory cytochromu P450 aplikace a dávkování metabolismus farmakologie MeSH
- jaterní mikrozomy metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- NADP metabolismus MeSH
- potkani Wistar MeSH
- seskviterpeny guajanové aplikace a dávkování metabolismus farmakologie MeSH
- systém (enzymů) cytochromů P-450 účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH