Alzheimer's disease (AD) is the most debilitating form of dementia, characterized by amyloid-β (Aβ)-related toxic mechanisms such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. The development of AD is influenced by environmental factors linked to lifestyle, including physical and mental inactivity, diet, and smoking, all of which have been associated with the severity of the disease and Aβ-related pathology. In this study, we used differentiated SH-SY5Y neuroblastoma and C6 glioma cells to investigate the neuroprotective and anti-inflammatory effects of daidzein, a naturally occurring isoflavone, in the context of Aβ oligomer-related toxicity. We observed that pre-treatment with daidzein prevented Aβ-induced cell viability loss, increased oxidative stress, and mitochondrial membrane potential decline in both SH-SY5Y and C6 cells. Furthermore, daidzein application reduced elevated levels of MAPK pathway proteins, pro-inflammatory molecules (cyclooxygenase-2 and IL-1β), and pyroptosis markers, including caspase-1 and gasdermin D, all of which were increased by Aβ exposure. These findings strongly suggest that daidzein alleviates inflammation and toxicity caused by Aβ oligomers. Our results indicate that daidzein could be a potential therapeutic agent for AD and other Aβ-related neurodegenerative diseases.
- Klíčová slova
- Alzheimer's disease, Amyloid-β, C6 cells, Daidzein, Neuroinflammation, SH-SY5Y cells,
- MeSH
- amyloidní beta-protein * toxicita MeSH
- antiflogistika * farmakologie MeSH
- gliom * patologie metabolismus farmakoterapie MeSH
- isoflavony * farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- nádorové buněčné linie MeSH
- neuroblastom * patologie metabolismus farmakoterapie MeSH
- neuroprotektivní látky * farmakologie MeSH
- oxidační stres účinky léků MeSH
- pyroptóza účinky léků MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amyloidní beta-protein * MeSH
- antiflogistika * MeSH
- daidzein MeSH Prohlížeč
- isoflavony * MeSH
- neuroprotektivní látky * MeSH
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
- Klíčová slova
- Alzheimer´s disease, Amyloid β42, Apoptosis, Cell death, GM1, Necroptosis, Reactive oxygen species,
- MeSH
- Alzheimerova nemoc metabolismus patologie MeSH
- amyloidní beta-protein * metabolismus farmakologie MeSH
- apoptóza * účinky léků MeSH
- buněčná smrt účinky léků MeSH
- lidé MeSH
- mitochondrie metabolismus účinky léků MeSH
- nádorové buněčné linie MeSH
- nekroptóza účinky léků MeSH
- neuroblastom * patologie metabolismus MeSH
- oxidační stres účinky léků MeSH
- peptidové fragmenty * farmakologie MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amyloid beta-protein (1-42) MeSH Prohlížeč
- amyloidní beta-protein * MeSH
- peptidové fragmenty * MeSH
- reaktivní formy kyslíku * MeSH
AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 µM on neuroblastoma cells.
- Klíčová slova
- AlphaFold, HDAC11, model optimization, molecular dynamics simulation, neuroblastoma,
- MeSH
- histondeacetylasy * metabolismus MeSH
- inhibitory histondeacetylas * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- neuroblastom * farmakoterapie patologie MeSH
- protinádorové látky * farmakologie chemie chemická syntéza MeSH
- racionální návrh léčiv * MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- umělá inteligence MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- HDAC11 protein, human MeSH Prohlížeč
- histondeacetylasy * MeSH
- inhibitory histondeacetylas * MeSH
- protinádorové látky * MeSH
Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.
- MeSH
- anaplastická lymfomová kináza * genetika metabolismus antagonisté a inhibitory MeSH
- apoptóza účinky léků genetika MeSH
- chemorezistence genetika účinky léků MeSH
- dibenzocyklohepteny * MeSH
- farnesyltranstransferasa * antagonisté a inhibitory metabolismus MeSH
- GTP-fosfohydrolasy * genetika metabolismus MeSH
- inhibitory proteinkinas * farmakologie terapeutické užití MeSH
- lidé MeSH
- membránové proteiny metabolismus genetika MeSH
- mikro RNA * genetika metabolismus MeSH
- mutace MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- neuroblastom * farmakoterapie genetika patologie metabolismus MeSH
- piperidiny * farmakologie terapeutické užití MeSH
- pyridiny * farmakologie terapeutické užití MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- synergismus léků MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ALK protein, human MeSH Prohlížeč
- anaplastická lymfomová kináza * MeSH
- dibenzocyklohepteny * MeSH
- farnesyltranstransferasa * MeSH
- GTP-fosfohydrolasy * MeSH
- inhibitory proteinkinas * MeSH
- lonafarnib MeSH Prohlížeč
- membránové proteiny MeSH
- mikro RNA * MeSH
- NRAS protein, human MeSH Prohlížeč
- piperidiny * MeSH
- pyridiny * MeSH
Mitochondria are central for cancer responses to therapy-induced stress signals. Refractory tumors often show attenuated sensitivity to apoptotic signaling, yet clinically relevant molecular actors to target mitochondria-mediated resistance remain elusive. Here, we show that MYC-driven neuroblastoma cells rely on intact mitochondrial ribosome (mitoribosome) processivity and undergo cell death following pharmacological inhibition of mitochondrial translation, regardless of their multidrug/mitochondrial resistance and stem-like phenotypes. Mechanistically, inhibiting mitoribosomes induced the mitochondrial stress-activated integrated stress response (ISR), leading to downregulation of c-MYC/N-MYC proteins prior to neuroblastoma cell death, which could be both rescued by the ISR inhibitor ISRIB. The ISR blocks global protein synthesis and shifted the c-MYC/N-MYC turnover toward proteasomal degradation. Comparing models of various neuroectodermal tumors and normal fibroblasts revealed overexpression of MYC proteins phosphorylated at the degradation-promoting site T58 as a factor that predetermines vulnerability of MYC-driven neuroblastoma to mitoribosome inhibition. Reducing N-MYC levels in a neuroblastoma model with tunable MYCN expression mitigated cell death induction upon inhibition of mitochondrial translation and functionally validated the propensity of neuroblastoma cells for MYC-dependent cell death in response to the mitochondrial ISR. Notably, neuroblastoma cells failed to develop significant resistance to the mitoribosomal inhibitor doxycycline over a long-term repeated (pulsed) selection. Collectively, we identify mitochondrial translation machinery as a novel synthetic lethality target for multidrug-resistant MYC-driven tumors.
- MeSH
- apoptóza MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- neuroblastom * farmakoterapie genetika metabolismus MeSH
- protoonkogen n-myc genetika metabolismus MeSH
- protoonkogenní proteiny c-myc genetika metabolismus MeSH
- signální transdukce MeSH
- umělé letální mutace * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protoonkogen n-myc MeSH
- protoonkogenní proteiny c-myc MeSH
Neuroblastoma represents 8-10 % of all malignant tumors in childhood and is responsible for 15 % of cancer deaths in the pediatric population. Aggressive neuroblastomas are often resistant to chemotherapy. Canonically, neuroblastomas can be classified according to the MYCN (N-myc proto-oncogene protein) gene amplification, a common marker of tumor aggressiveness and poor prognosis. It has been found that certain compounds with chelating properties may show anticancer activity, but there is little evidence for the effect of chelators on neuroblastoma. The effect of new chelators characterized by the same functional group, designated as HLZ (1-hydrazino phthalazine), on proliferation (WST-1 and methylene blue assay), cell cycle (flow cytometry), apoptosis (proliferation assay after use of specific pharmacological inhibitors and western blot analysis) and ROS production (fluorometric assay based on dichlorofluorescein diacetate metabolism) was studied in three neuroblastoma cell lines with different levels of MYCN amplification. The molecules were effective only on MYCN-non-amplified cells in which they arrested the cell cycle in the G0/G1 phase. We investigated the mechanism of action and identified the activation of cell signaling that involves protein kinase C.
- MeSH
- apoptóza MeSH
- chelátory farmakologie terapeutické užití MeSH
- dítě MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- neuroblastom * farmakoterapie MeSH
- onkogenní proteiny * genetika metabolismus farmakologie MeSH
- proliferace buněk MeSH
- protoonkogen n-myc genetika metabolismus terapeutické užití MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chelátory MeSH
- jaderné proteiny MeSH
- onkogenní proteiny * MeSH
- protoonkogen n-myc MeSH
Organophosphorus compounds (OPs) involving life-threatening nerve agents (NA) have been known for several decades. Despite a clear mechanism of their lethality caused by the irreversible inhibition of acetylcholinesterase (AChE) and manifested via overstimulation of peripheral nicotinic and muscarinic acetylcholine (ACh) receptors, the mechanism for central neurotoxicity responsible for acute or delayed symptoms of the poisoning has not been thoroughly uncovered. One of the reasons is the lack of a suitable model. In our study, we have chosen the SH-SY5Y model in both the differentiated and undifferentiated state to study the effects of NAs (GB, VX and A234). The activity of expressed AChE in cell lysate assessed by Ellman's method showed 7.3-times higher activity in differentiated SH-SY5Y cells in contrast to undifferentiated cells, and with no involvement of BuChE as proved by ethopropazine (20 µM). The activity of AChE was found to be, in comparison to untreated cells, 16-, 9.3-, and 1.9-times lower upon A234, VX, and GB (100 µM) administration respectively. The cytotoxic effect of given OPs expressed as the IC50 values for differentiated and undifferentiated SH-SY5Y, respectively, was found 12 mM and 5.7 mM (A234), 4.8 mM and 1.1 mM (VX) and 2.6 mM and 3.8 mM (GB). In summary, although our results confirm higher AChE expression in the differentiated SH-SY5Y cell model, the such higher expression does not lead to a more pronounced NA cytotoxic effect. On the contrary, higher expression of AChE may attenuate NA-induced cytotoxicity by scavenging the NA. Such finding highlights a protective role for cholinesterases by scavenging Novichoks (A-agents). Second, we confirmed the mechanism of cytotoxicity of NAs, including A-agents, can be ascribed rather to the non-specific effects of OPs than to AChE-mediated effects.
- Klíčová slova
- Acetylcholinesterase, Cytotoxicity, Neuroprotection, Neurotoxicity, Organophosphates, SH-SY5Y,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nervová bojová látka * MeSH
- neuroblastom * MeSH
- neurotoxické syndromy * etiologie MeSH
- protinádorové látky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- nervová bojová látka * MeSH
- protinádorové látky * MeSH
- VX MeSH Prohlížeč
OBJECTIVE: The Transatlantic Australasian Retroperitoneal Sarcoma Working Group conducted a retrospective study on the disease course and clinical management of ganglioneuromas. BACKGROUND: Ganglioneuromas are rare tumors derived from neural crest cells. Data on these tumors remain limited to case reports and single-institution case series. METHODS: Patients of all ages with pathologically confirmed primary retroperitoneal, intra-abdominal, and pelvic ganglioneuromas between January 1, 2000, and January 1, 2020, were included. We examined demographic, clinicopathologic, and radiologic characteristics, as well as clinical management. RESULTS: Overall, 328 patients from 29 institutions were included. The median age at diagnosis was 37 years with 59.1% of patients being female. Symptomatic presentation comprised 40.9% of cases, and tumors were often located in the extra-adrenal retroperitoneum (67.1%). At baseline, the median maximum tumor diameter was 7.2 cm. One hundred sixteen (35.4%) patients underwent active surveillance, whereas 212 (64.6%) patients underwent resection with 74.5% of operative cases achieving an R0/R1 resection. Serial tumor evaluations showed that malignant transformation to neuroblastoma was rare (0.9%, N=3). Tumors undergoing surveillance had a median follow-up of 1.9 years, with 92.2% of ganglioneuromas stable in size. With a median follow-up of 3.0 years for resected tumors, 84.4% of patients were disease free after resections, whereas recurrences were observed in 4 (1.9%) patients. CONCLUSIONS: Most ganglioneuromas have indolent disease courses and rarely transform to neuroblastoma. Thus, active surveillance may be appropriate for benign and asymptomatic tumors particularly when the risks of surgery outweigh the benefits. For symptomatic or growing tumors, resection may be curative.
- MeSH
- dospělí MeSH
- ganglioneurom * chirurgie MeSH
- lidé MeSH
- nádory měkkých tkání * MeSH
- neuroblastom * MeSH
- progrese nemoci MeSH
- retroperitoneální nádory * chirurgie MeSH
- retrospektivní studie MeSH
- sarkom * chirurgie patologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Parkinson's disease is characterized by the selective death of dopaminergic neurons in the midbrain and accumulation of amyloid fibrils composed of α-synuclein (αSyn). Current treatment involves approaches that compensate the death of dopaminergic neurons by increasing the dopamine levels in remaining cells. However, dopamine can interact with αSyn and produce oligomeric species which were reported to be toxic in many models. We studied formation of dopamine-induced αSyn oligomers and their effect on the αSyn aggregation. Using the Thioflavin T kinetic assay, we have shown that small oligomers efficiently inhibit αSyn fibrillization by binding to fibril ends and blocking the elongation. Moreover, all the fractions of oligomer species proved to be nontoxic in the differentiated SH-SY5Y cell model and showed negligible neurotoxicity on isolated rat synaptosomes. The observed inhibition is an important insight in understanding of dopamine-enhancing therapy on Parkinson's disease progression and explains the absence of pathology enhancement.
- Klíčová slova
- Parkinson’s disease, amyloid, dopamine, inhibitor, oligomer, synuclein,
- MeSH
- alfa-synuklein metabolismus MeSH
- amyloid metabolismus MeSH
- dopamin chemie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- neuroblastom * MeSH
- Parkinsonova nemoc * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-synuklein MeSH
- amyloid MeSH
- dopamin MeSH
INTRODUCTION: The analysis of urinary catecholamine metabolites is a cornerstone of neuroblastoma diagnostics. Currently, there is no consensus regarding the sampling method, and variable combinations of catecholamine metabolites are being used. We investigated if spot urine samples can be reliably used for analysis of a panel of catecholamine metabolites for the diagnosis of neuroblastoma. METHODS: Twenty-four-hour urine or spot urine samples were collected from patients with and without neuroblastoma at diagnosis. Homovanillic acid (HVA), vanillylmandelic acid (VMA), dopamine, 3-methoxytyramine, norepinephrine, normetanephrine, epinephrine and metanephrine were measured by high-performance liquid chromatography coupled with fluorescence detection (HPLC-FD) and/or ultra-performance liquid chromatography coupled with electrospray tandem mass spectrometry (UPLC-MS/MS). RESULTS: Catecholamine metabolite levels were measured in urine samples of 400 neuroblastoma patients (24-hour urine, n = 234; spot urine, n = 166) and 571 controls (all spot urine). Excretion levels of catecholamine metabolites and the diagnostic sensitivity for each metabolite were similar in 24-hour urine and spot urine samples (p > .08 and >.27 for all metabolites). The area under the receiver-operating-characteristic curve (AUC) of the panel containing all eight catecholamine metabolites was significantly higher compared to that of only HVA and VMA (AUC = 0.952 vs. 0.920, p = .02). No differences were observed in metabolite levels between the two analysis methods. CONCLUSION: Catecholamine metabolites in spot urine and 24-hour urine resulted in similar diagnostic sensitivities. The Catecholamine Working Group recommends the implementation of spot urine as standard of care. The panel of eight catecholamine metabolites has superior diagnostic accuracy over VMA and HVA.
- Klíčová slova
- catecholamine metabolites, diagnostic sensitivity, metanephrines, neuroblastoma, tandem mass spectrometry, urine collection,
- MeSH
- chromatografie kapalinová metody MeSH
- kyselina homovanilová moč MeSH
- kyselina vanilmandlová moč MeSH
- lidé MeSH
- metanefrin moč MeSH
- neuroblastom * diagnóza MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-methoxy-4-hydroxymandelic acid MeSH Prohlížeč
- kyselina homovanilová MeSH
- kyselina vanilmandlová MeSH
- metanefrin MeSH