bacterial extracellular vesicles Dotaz Zobrazit nápovědu
Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.
- Klíčová slova
- EVs, Ec083, NF‐κΒ signalling, bacterial extracellular vesicles, macrophage, nitric oxide, postbiotics, probiotic,
- MeSH
- aplikace intranazální * MeSH
- epitelové buňky metabolismus MeSH
- Escherichia coli * metabolismus MeSH
- extracelulární vezikuly * metabolismus MeSH
- lidé MeSH
- lymfoidní tkáň metabolismus MeSH
- makrofágy metabolismus MeSH
- myši MeSH
- NF-kappa B metabolismus MeSH
- oxidační stres MeSH
- plíce mikrobiologie metabolismus MeSH
- probiotika * aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- NF-kappa B MeSH
Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.
- MeSH
- Anaplasma phagocytophilum patogenita MeSH
- bakteriální infekce imunologie metabolismus MeSH
- buněčné linie MeSH
- členovci metabolismus mikrobiologie fyziologie MeSH
- Dermacentor metabolismus mikrobiologie fyziologie MeSH
- extracelulární vezikuly metabolismus ultrastruktura MeSH
- Francisella tularensis patogenita MeSH
- genová ontologie MeSH
- intravitální mikroskopie MeSH
- klíšťata metabolismus mikrobiologie MeSH
- klíště metabolismus mikrobiologie fyziologie MeSH
- kůže imunologie mikrobiologie parazitologie MeSH
- lidé MeSH
- membránový protein 2 asociovaný s vezikuly metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny R-SNARE metabolismus MeSH
- proteomika MeSH
- T-lymfocyty metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- transmisní elektronová mikroskopie MeSH
- zánět imunologie metabolismus parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- membránový protein 2 asociovaný s vezikuly MeSH
- proteiny R-SNARE MeSH
Vesiculation is a process employed by Gram-negative bacteria to release extracellular vesicles (EVs) into the environment. EVs from pathogenic bacteria play functions in host immune modulation, elimination of host defenses, and acquisition of nutrients from the host. Here, we observed EV production of the bacterial speck disease causal agent, Pseudomonas syringae pv. tomato (Pto) DC3000, as outer membrane vesicle release. Mass spectrometry identified 369 proteins enriched in Pto DC3000 EVs. The EV samples contained known immunomodulatory proteins and could induce plant immune responses mediated by bacterial flagellin. Having identified two biomarkers for EV detection, we provide evidence for Pto DC3000 releasing EVs during plant infection. Bioinformatic analysis of the EV-enriched proteins suggests a role for EVs in antibiotic defense and iron acquisition. Thus, our data provide insights into the strategies this pathogen may use to develop in a plant environment. IMPORTANCE The release of extracellular vesicles (EVs) into the environment is ubiquitous among bacteria. Vesiculation has been recognized as an important mechanism of bacterial pathogenesis and human disease but is poorly understood in phytopathogenic bacteria. Our research addresses the role of bacterial EVs in plant infection. In this work, we show that the causal agent of bacterial speck disease, Pseudomonas syringae pv. tomato, produces EVs during plant infection. Our data suggest that EVs may help the bacteria to adapt to environments, e.g., when iron could be limiting such as the plant apoplast, laying the foundation for studying the factors that phytopathogenic bacteria use to thrive in the plant environment.
- Klíčová slova
- Arabidopsis thaliana, EVs, NTA, PTI, Pto DC3000, extracellular vesicles, nanoparticle tracking analysis, pattern-triggered immunity, proteomics,
- MeSH
- bakteriální proteiny metabolismus MeSH
- extracelulární vezikuly * metabolismus MeSH
- flagelin metabolismus MeSH
- lidé MeSH
- nemoci rostlin mikrobiologie MeSH
- proteomika MeSH
- Pseudomonas syringae genetika metabolismus MeSH
- Solanum lycopersicum * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- flagelin MeSH
Bacterial extracellular vesicles (EVs) are cytosol-containing membrane spheres providing a chassis for the removal and delivery of cargoes in a highly dynamic and cue-responsive manner. EVs play important roles in cell-to-cell communication, including the dialogue between recipient microbial and plant cells. Bacterial EVs are well-studied in the medical field, but their relevance for plant infection is only now being recognized. Recent studies have demonstrated the role of EVs from phytobacteria in modulating plant immunity and the outcome of disease or in symbiosis. In this review, we highlight the composition of EVs and discuss their role in the interaction with plants. Knowledge of EV composition and functions will aid their use in biotechnology and agriculture.
- Klíčová slova
- EV cargoes, EVs, MVs, OMVs, Plant immunity, Plant protection, Plant-pathogen interactions, Symbiosis,
- MeSH
- extracelulární vezikuly * MeSH
- rostliny MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The human gut microbiome encompasses inter alia, the myriad bacterial species that create the optimal host-microorganism balance essential for normal metabolic and immune function. Various lines of evidence suggest that dysregulation of the microbiota-host interaction is linked to pathologies such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Extracellular vesicles (EVs), found in virtually all body fluids and produced by both eukaryotic cells and bacteria are involved in cell-cell communication and crosstalk mechanisms, such as the immune response, barrier function and intestinal flora. This review highlights advancements in knowledge of the functional role that EVs may have in IBD and CRC, and discusses the possible use of EVs derived from intestinal microbiota in therapeutic strategies for treating these conditions.
- Klíčová slova
- colorectal cancer, extracellular vesicles, gut microbiota, inflammatory bowel disease,
- MeSH
- Bacteria MeSH
- extracelulární vezikuly * MeSH
- idiopatické střevní záněty * MeSH
- kolorektální nádory * MeSH
- lidé MeSH
- mikrobiota * MeSH
- střevní mikroflóra * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Periodontal disease begins as an inflammatory response to a bacterial biofilm deposited around the teeth, which over time leads to the destruction of tooth-supporting structures and consequently tooth loss. Conventional treatment strategies show limited efficacy in promoting regeneration of damaged periodontal tissues. Here, a delivery platform is developed for small extracellular vesicles (sEVs) derived from gingival mesenchymal stem cells (GMSCs) to treat periodontitis. EVs can achieve comparable therapeutic effects to their cells of origin. However, the short half-lives of EVs after their administration along with their rapid diffusion away from the delivery site necessitate frequent administration to achieve therapeutic benefits. To address these issues, "dual delivery" microparticles are engineered enabling microenvironment-sensitive release of EVs by metalloproteinases at the affected site along with antibiotics to suppress bacterial biofilm growth. GMSC sEVs are able to decrease the secretion of pro-inflammatory cytokines by monocytes/macrophages and T cells, suppress T-cell activation, and induce the formation of T regulatory cells (Tregs) in vitro and in a rat model of periodontal disease. One-time administration of immunomodulatory GMSC sEV-decorated microparticles leads to a significant improvement in regeneration of the damaged periodontal tissue. This approach will have potential clinical applications in the regeneration of a variety of tissues.
- Klíčová slova
- extracellular vesicles, immunoengineering, local drug delivery, periodontal tissue healing, periodontitis,
- MeSH
- extracelulární vezikuly * MeSH
- kmenové buňky MeSH
- krysa rodu Rattus MeSH
- mezenchymální kmenové buňky * MeSH
- nemoci parodontu * terapie MeSH
- parodont MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Francisella tularensis is known to release unusually shaped tubular outer membrane vesicles (OMV) containing a number of previously identified virulence factors and immunomodulatory proteins. In this study, we present that OMV isolated from the F. tularensis subsp. holarctica strain FSC200 enter readily into primary bone marrow-derived macrophages (BMDM) and seem to reside in structures resembling late endosomes in the later intervals. The isolated OMV enter BMDM generally via macropinocytosis and clathrin-dependent endocytosis, with a minor role played by lipid raft-dependent endocytosis. OMVs proved to be non-toxic and had no negative impact on the viability of BMDM. Unlike the parent bacterium itself, isolated OMV induced massive and dose-dependent proinflammatory responses in BMDM. Using transmission electron microscopy, we also evaluated OMV release from the bacterial surface during several stages of the interaction of Francisella with BMDM. During adherence and the early phase of the uptake of bacteria, we observed numerous tubular OMV-like protrusions bulging from the bacteria in close proximity to the macrophage plasma membrane. This suggests a possible role of OMV in the entry of bacteria into host cells. On the contrary, the OMV release from the bacterial surface during its cytosolic phase was negligible. We propose that OMV play some role in the extracellular phase of the interaction of Francisella with the host and that they are involved in the entry mechanism of the bacteria into macrophages.
- Klíčová slova
- FSC200, Francisella tularensis, cell entry, host–pathogen interaction, macrophage, outer membrane vesicles,
- Publikační typ
- časopisecké články MeSH
Lipid bi-layered particles known as membrane vesicles (MVs), produced by Gram-positive bacteria are a communication tool throughout the entire bacterial growth. However, the MVs characteristics may vary across all stages of maternal culture growth, leading to inconsistencies in MVs research. This, in turn, hinders their employment as nanocarriers, vaccines and other medical applications. In this study, we aimed to comprehensively characterize MVs derived from Lacticaseibacillus rhamnosus CCM7091 isolated at different growth stages: early exponential (6 h, MV6), late exponential (12 h, MV12) and late stationary phase (48 h, MV48). We observed significant differences in protein content between MV6 and MV48 (data are available via ProteomeXchange with identifier PXD041580), likely contributing to their different immunomodulatory capacities. In vitro analysis demonstrated that MV48 uptake rate by epithelial Caco-2 cells is significantly higher and they stimulate an immune response in murine macrophages RAW 264.7 (elevated production of TNFα, IL-6, IL-10, NO). This correlated with increased expression of lipoteichoic acid (LTA) and enhanced TLR2 signalling in MV48, suggesting that LTA contributes to the immunomodulation. In conclusion, we showed that Lacticaseibacillus rhamnosus CCM7091-derived MVs from the late stationary phase boost the immune response the most effectively, which pre-destines them for therapeutical application as nanocarriers.
- Klíčová slova
- Lacticaseibacillus rhamnosus, TLR2, growth curve, immunomodulation, lipoteichoic acid, membrane vesicles, nanocarriers,
- Publikační typ
- časopisecké články MeSH
Probiotics can affect human health, keep the balance between beneficial and pathogenic bacteria, and their colonizing abilities enable the enhancement of the epithelial barrier, preventing the invasion of pathogens. Health benefits of probiotics were related to allergy, depression, eczema, cancer, obesity, inflammatory diseases, viral infections, and immune regulation. Probiotic bacterial cells contain various proteins that function as effector molecules, and explaining their roles in probiotic actions is a key to developing efficient and targeted treatments for various disorders. Systematic proteomic studies of probiotic proteins (probioproteomics) can provide information about the type of proteins involved, their expression levels, and the pathological changes. Advanced proteomic methods with mass spectrometry instrumentation and bioinformatics can point out potential candidates of next-generation probiotics that are regulated under pharmaceutical frameworks. In addition, the application of proteomics with other omics methods creates a powerful tool that can expand our understanding about diverse probiotic functionality. In this review, proteomic strategies for identification/quantitation of the proteins in probiotic bacteria were overviewed. The types of probiotic proteins investigated by proteomics were described, such as intracellular proteins, surface proteins, secreted proteins, and the proteins of extracellular vesicles. Examples of pathological conditions in which probiotic bacteria played crucial roles were discussed.
- Klíčová slova
- bacterial proteins, health-promoting effect, mass spectrometry-based proteomics, probiotics,
- MeSH
- Bacteria metabolismus MeSH
- bakteriální proteiny * metabolismus MeSH
- lidé MeSH
- probiotika * MeSH
- proteomika * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny * MeSH
Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.
- Klíčová slova
- DUBs, Francisella, UCH-L5, USP10, USP25, deubiquitination, exosomes, extracellular vesicles,
- MeSH
- deubikvitinasy metabolismus MeSH
- Francisella tularensis * MeSH
- gramnegativní bakteriální infekce * metabolismus MeSH
- lidé MeSH
- makrofágy MeSH
- signální transdukce MeSH
- thiolesterasa ubikvitinu metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deubikvitinasy MeSH
- thiolesterasa ubikvitinu MeSH
- USP10 protein, human MeSH Prohlížeč
- USP25 protein, human MeSH Prohlížeč