• Je něco špatně v tomto záznamu ?

Model selection and multimodel inference : a practical information-theoretic approach

Kenneth P. Burnham, David R. Anderson

Publikováno
New York : Springer, c2002
Vydání
2nd ed.
Stránkování
xxvi, 488 s.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/MED00147487
Odkazy

Knihovny.cz ISBN 0-387-95364-7

The second edition of this book is unique in that it focuses on methods for making formal statistical inference from all the models in an a priori set (Multi-Model Inference). A philosophy is presented for model-based data analysis and a general strategy outlined for the analysis of empirical data. The book invites increased attention on a priori science hypotheses and modeling. Kullback-Leibler Information represents a fundamental quantity in science and is Hirotugu Akaike\'s basis for model selection. The maximized log-likelihood function can be bias-corrected as an estimator of expected, relative Kullback-Leibler information. This leads to Akaike\'s Information Criterion (AIC) and various extensions. These methods are relatively simple and easy to use in practice, but based on deep statistical theory. The information theoretic approaches provide a unified and rigorous theory, an extension of likelihood theory, an important application of information theory, and are objective and practical to employ across a very wide class of empirical problems. The book presents several new ways to incorporate model selection uncertainty into parameter estimates and estimates of precision. An array of challenging examples is given to illustrate various technical issues. This is an applied book written primarily for biologists and statisticians wanting to make inferences from multiple models and is suitable as a graduate text or as a reference for professional analysts.

heslář, bibliografie, index

Vlastník Detaily Služby
Další knihovny Detaily Služby
BOD002 BOD002 Signatura 15859
000      
01442nam 2200433 a 4500
001      
MED00147487
003      
CZ-PrNML
005      
20141219161836.0
008      
041103s2002 xxu eng||
009      
BK
020    __
$a 0-387-95364-7 $q (váz.)
040    __
$a BOD002 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu $c US
072    _7
$x Přírodní vědy. Matematické vědy $a 5 $2 konspekt $7 sk135991
080    __
$a 57 $2 h
080    __
$a 311 $2 h
080    __
$a 5 $2 h
100    1_
$a Burnham, Kenneth P. $4 aut $7 _gn020005599
245    10
$a Model selection and multimodel inference : $b a practical information-theoretic approach / $c Kenneth P. Burnham, David R. Anderson
250    __
$a 2nd ed.
260    __
$a New York : $b Springer, $c c2002
300    __
$a xxvi, 488 s.
500    __
$a heslář, bibliografie, index
650    07
$a biologie $2 czmesh $7 D001695
650    07
$a matematika $2 czmesh $7 D008433
650    07
$a statistika jako téma $2 czmesh $7 D013223
650    07
$a statistika, zdravotnická statistika $2 mednas $7 nlk20040148271
650    07
$a přírodní vědy $2 mednas $7 nlk20040148348
650    07
$a biologie $2 mednas $7 nlk20040147082
700    1_
$a Anderson, David R. $q (David Raymond) $4 aut $7 _gn010014142
990    __
$a 20050319 $b ABA008
991    __
$a 20050527 $b ABA008
BAS    __
$a SKM $a 02 $a 26 $a 11