• Something wrong with this record ?

Bayesian statistics : an introduction

Peter M. Lee

Published
London : Arnold ; New York : Wiley, 2004
Edition
3rd ed.
Pagination
xv, 351 s. : il.

Language English Country Great Britain

Links

Knihovny.cz ISBN 0-340-81405-5

BBayesian Statistics is the school of thought that uses all information surrounding the likelihood of an event rather than just that collected experimentally. Among statisticians the Bayesian approach continues to gain adherents and this new edition of Peter Lee\'s well-established introduction maintains the clarity of exposition and use of examples for which this text is known and praised. In addition, there is extended coverage of the Metropolis-Hastings algorithm as well as an introduction to the use of BUGS (Bayesian Inference Using Gibbs Sampling) as this is now the standard computational tool for such numerical work. Other alterations include new material on generalized linear modelling and Bernardo\'s theory of reference points.

Bibliography, etc.

Obsahuje bibliografii a rejstřík

Owner Details Services
Other libraries Details Services
ABD007 ABD007 Shelf no. neuvedena
000      
00991nam 2200313 a 4500
001      
MED00148331
003      
CZ-PrNML
005      
20190205093822.0
008      
040920s2004 xxk eng||
009      
BK
020    __
$a 0-340-81405-5
040    __
$a ABD007 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk $c GB
072    _7
$x Statistika $a 311 $2 konspekt $7 sk135939
080    __
$a 311 $2 h
100    1_
$a Lee, Peter M., $d 1940-2017 $4 aut $7 ctu2013790161
245    10
$a Bayesian statistics : $b an introduction / $c Peter M. Lee
250    __
$a 3rd ed.
260    __
$a London : $b Arnold ; $a New York : $b Wiley, $c 2004
300    __
$a xv, 351 s. : $b il.
504    __
$a Obsahuje bibliografii a rejstřík
650    07
$a statistika jako téma $x metody $x statistika a číselné údaje $2 czmesh $7 D013223
650    07
$a statistika, zdravotnická statistika $2 mednas $7 nlk20040148271
990    __
$a 20051206 $b ABA008
991    __
$a 20190205094057 $b ABA008
BAS    __
$a SKM $a 02 $a 26 $a 11