A disintegrin and metalloprotease 10 (ADAM10) is a central regulator of murine liver tissue homeostasis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26942887
PubMed Central
PMC4951223
DOI
10.18632/oncotarget.7836
PII: 7836
Knihovny.cz E-zdroje
- Klíčová slova
- ADAM10, Notch, Pathology Section, c-Met, hepatocyte differentiation, liver progenitor cell,
- MeSH
- buněčná diferenciace fyziologie MeSH
- down regulace MeSH
- hepatocyty metabolismus patologie MeSH
- homeostáza MeSH
- játra cytologie metabolismus patologie MeSH
- membránové glykoproteiny metabolismus MeSH
- membránové proteiny nedostatek genetika metabolismus MeSH
- myši knockoutované MeSH
- myši transgenní MeSH
- myši MeSH
- nekróza MeSH
- proliferace buněk fyziologie MeSH
- protein ADAM10 nedostatek genetika metabolismus MeSH
- receptor Notch2 metabolismus MeSH
- sekretasy nedostatek genetika metabolismus MeSH
- signální transdukce MeSH
- transportní proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Adam10 protein, mouse MeSH Prohlížeč
- bile acid binding proteins MeSH Prohlížeč
- membránové glykoproteiny MeSH
- membránové proteiny MeSH
- Notch2 protein, mouse MeSH Prohlížeč
- protein ADAM10 MeSH
- receptor Notch2 MeSH
- sekretasy MeSH
- transportní proteiny MeSH
UNLABELLED: A Disintegrin And Metalloprotease (ADAM) 10 exerts essential roles during organ development and tissue integrity in different organs, mainly through activation of the Notch pathway. However, only little is known about its implication in liver tissue physiology. Here we show that in contrast to its role in other tissues, ADAM10 is dispensable for the Notch2-dependent biliary tree formation. However, we demonstrate that expression of bile acid transporters is dependent on ADAM10. Consequently, mice deficient for Adam10 in hepatocytes, cholangiocytes and liver progenitor cells develop spontaneous hepatocyte necrosis and concomitant liver fibrosis. We furthermore observed a strongly augmented ductular reaction in 15-week old ADAM10(Δhep/Δch) mice and demonstrate that c-Met dependent liver progenitor cell activation is enhanced. Additionally, liver progenitor cells are primed to hepatocyte differentiation in the absence of ADAM10. These findings show that ADAM10 is a novel central node controlling liver tissue homeostasis. HIGHLIGHTS: Loss of ADAM10 in murine liver results in hepatocyte necrosis and concomitant liver fibrosis. ADAM10 directly regulates expression of bile acid transporters but is dispensable for Notch2-dependent formation of the biliary system. Activation of liver progenitor cells is enhanced through increased c-Met signalling, in the absence of ADAM10. Differentiation of liver progenitor cells to hepatocytes is augmented in the absence of ADAM10.
Institute of Anatomy Christian Albrechts University Kiel Germany
Institute of Biochemistry Christian Albrechts University Kiel Germany
Institute of Pathology University Hospital Schleswig Holstein Campus Kiel Kiel Germany
Laboratory of Integrative Biology Institute of Molecular Genetics of the ASCR Prague Czech Republic
School of Medicine and Pharmacology University of Western Australia Fremantle Australia
Zobrazit více v PubMed
Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lübke T, Lena Illert A, von Figxura K, Saftig P. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet. 2002;11:2615–24. PubMed
Tsai Y-H, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, Bhatt RG, Stoeck A, Maillard I, Crawford HC, Samuelson LC, Dempsey PJ. ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology. 2014;147:822–34.e13. doi: 10.1053/j.gastro.2014.07.003. PubMed DOI PMC
Gibb DR, El Shikh M, Kang D-J, Rowe WJ, El Sayed R, Cichy J, Yagita H, Tew JG, Dempsey PJ, Crawford HC, Conrad DH. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J Exp Med. 2010;207:623–35. doi: 10.1084/jem.20091990. PubMed DOI PMC
Weber S, Saftig P. Ectodomain shedding and ADAMs in development. Development. 2012;139:3693–3709. doi: 10.1242/dev.076398. PubMed DOI
Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology. 2014;59:1617–26. doi: 10.1002/hep.26753. PubMed DOI
Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, Sansom OJ, Iredale JP, Lowell S, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18:572–79. doi: 10.1038/nm.2667. PubMed DOI PMC
Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16:235–42. doi: 10.1038/ng0797-235. PubMed DOI
Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology. 2008;48:607–16. doi: 10.1002/hep.22381. PubMed DOI
Sparks EE, Perrien DS, Huppert KA, Peterson TE, Huppert SS. Defects in hepatic Notch signaling result in disruption of the communicating intrahepatic bile duct network in mice. Dis Model Mech. 2011;4:359–67. doi: 10.1242/dmm.005793. PubMed DOI PMC
Richardson L, Venkataraman S, Stevenson P, Yang Y, Moss J, Graham L, Burton N, Hill B, Rao J, Baldock RA, Armit C. EMAGE mouse embryo spatial gene expression database: 2014 update. Nucleic Acids Res. 2014;42:D835–44. doi: 10.1093/nar/gkt1155. PubMed DOI PMC
Kellendonk C, Opherk C, Anlag K, Schütz G, Tronche F. Hepatocyte-specific expression of Cre recombinase. Genesis. 2000;26:151–53. PubMed
Jeliazkova P, Jörs S, Lee M, Zimber-Strobl U, Ferrer J, Schmid RM, Siveke JT, Geisler F. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology. 2013;57:2469–79. doi: 10.1002/hep.26254. PubMed DOI
Tirnitz-Parker JEE, Tonkin JN, Knight B, Olynyk JK, Yeoh GCT. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet. Int J Biochem Cell Biol. 2007;39:2226–39. doi: 10.1016/j.biocel.2007.06.008. PubMed DOI
Fiorotto R, Raizner A, Morell CM, Torsello B, Scirpo R, Fabris L, Spirli C, Strazzabosco M. Notch signaling regulates tubular morphogenesis during repair from biliary damage in mice. J Hepatol. 2013;59:124–30. doi: 10.1016/j.jhep.2013.02.025. PubMed DOI PMC
Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol. 2013;58:155–68. doi: 10.1016/j.jhep.2012.08.002. PubMed DOI PMC
Ishikawa T, Factor VM, Marquardt JU, Raggi C, Seo D, Kitade M, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology. 2012;55:1215–26. doi: 10.1002/hep.24796. PubMed DOI PMC
Tirnitz-Parker JEE, Viebahn CS, Jakubowski A, Klopcic BRS, Olynyk JK, Yeoh GCT, Knight B. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology. 2010;52:291–302. doi: 10.1002/hep.23663. PubMed DOI
Schelter F, Kobuch J, Moss ML, Becherer JD, Comoglio PM, Boccaccio C, Krüger A. A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem. 2010;285:26335–40. doi: 10.1074/jbc.M110.106435. PubMed DOI PMC
Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, Tytgat GN, Borst P, Baas F, Oude Elferink RP. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology. 1997;25:1539–42. doi: 10.1002/hep.510250635. PubMed DOI
Tousseyn T, Thathiah A, Jorissen E, Raemaekers T, Konietzko U, Reiss K, Maes E, Snellinx A, Serneels L, Nyabi O, Annaert W, Saftig P, Hartmann D, et al. ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol Chem. 2009;284:11738–47. doi: 10.1074/jbc.M805894200. PubMed DOI PMC
Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol. 1999;154:537–41. doi: 10.1016/S0002-9440(10)65299-6. PubMed DOI PMC
Nobili V, Carpino G, Alisi A, Franchitto A, Alpini G, De Vito R, Onori P, Alvaro D, Gaudio E. Hepatic progenitor cells activation, fibrosis, and adipokines production in pediatric nonalcoholic fatty liver disease. Hepatology. 2012;56:2142–53. doi: 10.1002/hep.25742. PubMed DOI
Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, Stanger BZ. Notch signaling controls liver development by regulating biliary differentiation. Development. 2009;136:1727–39. doi: 10.1242/dev.029140. PubMed DOI PMC
Thenappan A, Li Y, Kitisin K, Rashid A, Shetty K, Johnson L, Mishra L. Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver. Hepatology. 2010;51:1373–82. doi: 10.1002/hep.23449. PubMed DOI PMC
Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest. 2012;122:3914–18. doi: 10.1172/JCI63065. PubMed DOI PMC
Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, Grompe M. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15:605–18. doi: 10.1016/j.stem.2014.09.008. PubMed DOI PMC
Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Knäuper V, Docherty AJ, Murphy G. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 2000;473:275–79. PubMed