-
Je něco špatně v tomto záznamu ?
Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function
Richards RJ, Wu H, Trantirek L, O'Connor CM, Collins K, Feigon J.
Jazyk angličtina Země Spojené státy americké
NLK
Free Medical Journals
od 1995 do Před 6 měsíci
PubMed Central
od 1995 do Před 1 rokem
Europe PubMed Central
od 1995 do Před 1 rokem
Open Access Digital Library
od 1995-03-01
- MeSH
- genetické matrice MeSH
- holoenzymy metabolismus MeSH
- katalýza MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- párování bází MeSH
- protozoální proteiny fyziologie chemie metabolismus MeSH
- RNA protozoální metabolismus MeSH
- RNA genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- sekvence nukleotidů MeSH
- telomerasa genetika metabolismus MeSH
- terciární struktura proteinů MeSH
- Tetrahymena thermophila enzymologie genetika metabolismus MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
Tetrahymena telomerase RNA (TER) contains several regions in addition to the template that are important for function. Central among these is the stem-loop IV domain, which is involved in both catalysis and RNP assembly, and includes binding sites for both the holoenzyme assembly protein p65 and telomerase reverse transcriptase (TERT). Stem-loop IV contains two regions with high evolutionary sequence conservation: a central GA bulge between helices, and a terminal loop. We solved the solution structure of loop IV and modeled the structure of the helical region containing the GA bulge, using NMR and residual dipolar couplings. The central GA bulge with flanking C-G base pairs induces a approximately 50 degrees semi-rigid bend in the helix. Loop IV is highly structured, and contains a conserved C-U base pair at the top of the helical stem. Analysis of new and previous biochemical data in light of the structure provides a rationale for some of the sequence conservation in this region of TER. The results suggest that during holoenzyme assembly the protein p65 recognizes a bend in stem IV, and this binding to central stem IV helps to position the structured loop IV for interaction with TERT and other region(s) of TER.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc07522923
- 003
- CZ-PrNML
- 005
- 20111210134604.0
- 008
- 090511s2006 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Richards, Rebecca J.
- 245 10
- $a Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function / $c Richards RJ, Wu H, Trantirek L, O'Connor CM, Collins K, Feigon J.
- 314 __
- $a Department of Molecular Biology and Biochemistry, University of South Bohemia, Czech Republic
- 520 9_
- $a Tetrahymena telomerase RNA (TER) contains several regions in addition to the template that are important for function. Central among these is the stem-loop IV domain, which is involved in both catalysis and RNP assembly, and includes binding sites for both the holoenzyme assembly protein p65 and telomerase reverse transcriptase (TERT). Stem-loop IV contains two regions with high evolutionary sequence conservation: a central GA bulge between helices, and a terminal loop. We solved the solution structure of loop IV and modeled the structure of the helical region containing the GA bulge, using NMR and residual dipolar couplings. The central GA bulge with flanking C-G base pairs induces a approximately 50 degrees semi-rigid bend in the helix. Loop IV is highly structured, and contains a conserved C-U base pair at the top of the helical stem. Analysis of new and previous biochemical data in light of the structure provides a rationale for some of the sequence conservation in this region of TER. The results suggest that during holoenzyme assembly the protein p65 recognizes a bend in stem IV, and this binding to central stem IV helps to position the structured loop IV for interaction with TERT and other region(s) of TER.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a párování bází $7 D020029
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a katalýza $7 D002384
- 650 _2
- $a holoenzymy $x metabolismus $7 D020035
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a nukleární magnetická rezonance biomolekulární $7 D019906
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 650 _2
- $a protozoální proteiny $x fyziologie $x chemie $x metabolismus $7 D015800
- 650 _2
- $a RNA $x genetika $x metabolismus $7 D012313
- 650 _2
- $a RNA protozoální $x metabolismus $7 D016053
- 650 _2
- $a telomerasa $x genetika $x metabolismus $7 D019098
- 650 _2
- $a genetické matrice $7 D013698
- 650 _2
- $a Tetrahymena thermophila $x enzymologie $x genetika $x metabolismus $7 D016808
- 700 1_
- $a Wu, Haihong
- 700 1_
- $a Trantírek, Lukáš $7 xx0129019
- 700 1_
- $a O'Connor, Catherine M.
- 700 1_
- $a Collins, Kathleen
- 700 1_
- $a Feigon, Juli
- 773 0_
- $w MED00006007 $t RNA $g Roč. 12, č. 8 (2006), s. 1475-1485 $x 1355-8382
- 910 __
- $a ABA008 $b x $y 9
- 990 __
- $a 20090310084605 $b ABA008
- 991 __
- $a 20111031152611 $b ABA008
- 999 __
- $a ok $b bmc $g 651013 $s 504181
- BAS __
- $a 3
- BMC __
- $a 2006 $b 12 $c 8 $d 1475-1485 $i 1355-8382 $m RNA $x MED00006007
- LZP __
- $a 2009-B3/ipme