-
Je něco špatně v tomto záznamu ?
Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy
Humpolícková J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y.
Jazyk angličtina Země Spojené státy americké
NLK
Cell Press Free Archives
od 1960-01-01 do Před 1 rokem
Free Medical Journals
od 1960 do Před 1 rokem
Freely Accessible Science Journals
od 1960 do Před 12 měsíci
PubMed Central
od 1960 do Před 1 rokem
Europe PubMed Central
od 1960 do Před 1 rokem
ProQuest Central
od 1999-02-01 do 2008-12-15
Open Access Digital Library
od 1960-09-01
Health & Medicine (ProQuest)
od 1999-02-01 do 2008-12-15
- MeSH
- biofyzika metody MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- difuze MeSH
- financování organizované MeSH
- fluorescenční spektrometrie metody MeSH
- konfokální mikroskopie MeSH
- lasery MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
The plasma membrane of various mammalian cell types is heterogeneous in structure and may contain microdomains, which can impose constraints on the lateral diffusion of its constituents. Fluorescence correlation spectroscopy (FCS) can be used to investigate the dynamic properties of the plasma membrane of living cells. Very recently, Wawrezinieck et al. (Wawrezinieck, L., H. Rigneault, D. Marguet, and P. F. Lenne. 2005. Biophys. J. 89:4029-4042) described a method to probe the nature of the lateral microheterogeneities of the membrane by varying the beam size in the FCS instrument. The dependence of the width of the autocorrelation function at half-maximum, i.e., the diffusion time, on the transverse area of the confocal volume gives information on the nature of the imposed confinement. We describe an alternative approach that yields essentially the same information, and can readily be applied on commercial FCS instruments by measuring the diffusion time and the particle number at various relative positions of the cell membrane with respect to the waist of the laser beam, i.e., by performing a Z-scan.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc09003799
- 003
- CZ-PrNML
- 005
- 20111210153304.0
- 008
- 091124s2006 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Humpolíčková, Jana. $7 xx0274004
- 245 10
- $a Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy / $c Humpolícková J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y.
- 314 __
- $a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 520 9_
- $a The plasma membrane of various mammalian cell types is heterogeneous in structure and may contain microdomains, which can impose constraints on the lateral diffusion of its constituents. Fluorescence correlation spectroscopy (FCS) can be used to investigate the dynamic properties of the plasma membrane of living cells. Very recently, Wawrezinieck et al. (Wawrezinieck, L., H. Rigneault, D. Marguet, and P. F. Lenne. 2005. Biophys. J. 89:4029-4042) described a method to probe the nature of the lateral microheterogeneities of the membrane by varying the beam size in the FCS instrument. The dependence of the width of the autocorrelation function at half-maximum, i.e., the diffusion time, on the transverse area of the confocal volume gives information on the nature of the imposed confinement. We describe an alternative approach that yields essentially the same information, and can readily be applied on commercial FCS instruments by measuring the diffusion time and the particle number at various relative positions of the cell membrane with respect to the waist of the laser beam, i.e., by performing a Z-scan.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a biologický transport $7 D001692
- 650 _2
- $a biofyzika $x metody $7 D001703
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a difuze $7 D004058
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lasery $7 D007834
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a fluorescenční spektrometrie $x metody $7 D013050
- 700 1_
- $a Gielen, Ellen
- 700 1_
- $a Benda, Aleš. $7 xx0228989
- 700 1_
- $a Faguľová, Veronika $7 xx0126443
- 700 1_
- $a Vercammen, Jo
- 700 1_
- $a Vandeven, Martin
- 700 1_
- $a Hof, Martin, $d 1962- $7 ntka172581
- 700 1_
- $a Ameloot, Marcel $7 gn_A_00005504
- 700 1_
- $a Engelborghs, Yves
- 773 0_
- $w MED00000774 $t Biophysical journal $g Roč. 91, č. 3 (2006), s. L23-L25 $x 0006-3495
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20090310084605 $b ABA008
- 991 __
- $a 20100128141736 $b ABA008
- 999 __
- $a ok $b bmc $g 697610 $s 559987
- BAS __
- $a 3
- BMC __
- $a 2006 $b 91 $c 3 $d L23-L25 $i 0006-3495 $m Biophysical journal $x MED00000774
- LZP __
- $a 2009-B4/ipme