Fucosylated inhibitors of recently identified bangle lectin from Photorhabdus asymbiotica
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31624296
PubMed Central
PMC6797808
DOI
10.1038/s41598-019-51357-9
PII: 10.1038/s41598-019-51357-9
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky chemie farmakologie terapeutické užití MeSH
- bakteriální infekce farmakoterapie mikrobiologie MeSH
- bakteriální proteiny antagonisté a inhibitory chemie izolace a purifikace metabolismus MeSH
- dendrimery chemie farmakologie terapeutické užití MeSH
- erytrocyty MeSH
- fukosa analogy a deriváty farmakologie terapeutické užití MeSH
- hemaglutinace účinky léků MeSH
- interakce hostitele a patogenu účinky léků MeSH
- krystalografie rentgenová MeSH
- lektiny antagonisté a inhibitory chemie izolace a purifikace metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- Photorhabdus metabolismus MeSH
- povrchová plasmonová rezonance MeSH
- rekombinantní proteiny chemie izolace a purifikace metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- dendrimery MeSH
- fucose-binding lectin MeSH Prohlížeč
- fukosa MeSH
- lektiny MeSH
- ligandy MeSH
- rekombinantní proteiny MeSH
A recently described bangle lectin (PHL) from the bacterium Photorhabdus asymbiotica was identified as a mainly fucose-binding protein that could play an important role in the host-pathogen interaction and in the modulation of host immune response. Structural studies showed that PHL is a homo-dimer that contains up to seven L-fucose-specific binding sites per monomer. For these reasons, potential ligands of the PHL lectin: α-L-fucopyranosyl-containing mono-, di-, tetra-, hexa- and dodecavalent ligands were tested. Two types of polyvalent structures were investigated - calix[4]arenes and dendrimers. The shared feature of all these structures was a C-glycosidic bond instead of the more common but physiologically unstable O-glycosidic bond. The inhibition potential of the tested structures was assessed using different techniques - hemagglutination, surface plasmon resonance, isothermal titration calorimetry, and cell cross-linking. All the ligands proved to be better than free L-fucose. The most active hexavalent dendrimer exhibited affinity three orders of magnitude higher than that of standard L-fucose. To determine the binding mode of some ligands, crystal complex PHL/fucosides 2 - 4 were prepared and studied using X-ray crystallography. The electron density in complexes proved the presence of the compounds in 6 out of 7 fucose-binding sites.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Varki A. Biological roles of glycans. Glycobiology. 2017;27:3–49. doi: 10.1093/glycob/cww086. PubMed DOI PMC
Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim. Biophys. Acta. 2006;1760:527–537. doi: 10.1016/j.bbagen.2005.12.008. PubMed DOI
Imberty A, Wimmerová M, Mitchell EP, Gilboa-Garber N. Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. Microbes Infect. 2004;6:221–228. doi: 10.1016/j.micinf.2003.10.016. PubMed DOI
Farmer JJ, et al. Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J. Clin. Microbiol. 1989;27:1594–1600. PubMed PMC
Peel MM, et al. Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J. Clin. Microbiol. 1999;37:3647–3653. PubMed PMC
Mulley G, et al. From insect to man: Photorhabdus sheds light on the emergence of human pathogenicity. PloS One. 2015;10:e0144937. doi: 10.1371/journal.pone.0144937. PubMed DOI PMC
Gerrard JG, et al. Nematode symbiont for Photorhabdus asymbiotica. Emerg. Infect. Dis. 2006;12:1562–1564. doi: 10.3201/eid1210.060464. PubMed DOI PMC
Peat SM, et al. A robust phylogenetic framework for the bacterial genus Photorhabdus and its use in studying the evolution and maintenance of bioluminescence: A case for 16S, gyrB, and glnA. Mol. Phylogenet. Evol. 2010;57:728–740. doi: 10.1016/j.ympev.2010.08.012. PubMed DOI
Kuwata R, Yoshiga T, Yoshida M, Kondo E. Mutualistic association of Photorhabdus asymbiotica with Japanese heterorhabditid entomopathogenic nematodes. Microbes Infect. 2008;10:734–741. doi: 10.1016/j.micinf.2008.03.010. PubMed DOI
Thanwisai A, et al. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLoS ONE. 2012;7:e43835. doi: 10.1371/journal.pone.0043835. PubMed DOI PMC
Gerrard JG, McNevin S, Alfredson D, Forgan-Smith R, Fraser N. Photorhabdus species: bioluminescent bacteria as emerging human pathogens? Emerg. Infect. Dis. 2003;9:251–254. doi: 10.3201/eid0902.020222. PubMed DOI PMC
Gerrard J, Waterfield N, Vohra R, ffrench-Constant R. Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect. 2004;6:229–237. doi: 10.1016/j.micinf.2003.10.018. PubMed DOI
Weissfeld AS, et al. Photorhabdus asymbiotica, a pathogen emerging on two continents that proves that there is no substitute for a well-trained clinical microbiologist. J. Clin. Microbiol. 2005;43:4152–4155. doi: 10.1128/JCM.43.8.4152-4155.2005. PubMed DOI PMC
Costa SCP, et al. Recent insight into the pathogenicity mechanisms of the emergent pathogen Photorhabdus asymbiotica. Microbes Infect. 2010;12:182–189. doi: 10.1016/j.micinf.2009.12.003. PubMed DOI
Machado, R. A. R. et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int. J. Syst. Evol. Microbiol. 68, 2664–2681 (2018). PubMed
Jančaříková G, et al. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. PLOS Pathog. 2017;13:e1006564. doi: 10.1371/journal.ppat.1006564. PubMed DOI PMC
Chemani C, et al. Role of LecA and LecB lectins in Pseudomonas aeruginosa - induced lung injury and effect of carbohydrate ligands. Infect. Immun. 2009;77:2065–2075. doi: 10.1128/IAI.01204-08. PubMed DOI PMC
Wu XR, Sun TT, Medina JJ. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl. Acad. Sci. USA. 1996;93:9630–9635. doi: 10.1073/pnas.93.18.9630. PubMed DOI PMC
Kumar A, et al. A novel fucose-binding lectin from Photorhabdus luminescens (PLL) with an unusual hepta-bladed β-propeller tetrameric structure. J. Biol. Chem. 2016;291:25032–25049. doi: 10.1074/jbc.M115.693473. PubMed DOI PMC
Beshr G, et al. Photorhabdus luminescens lectin A (PllA): A new probe for detecting α-galactoside–terminating glycoconjugates. J. Biol. Chem. 2017;292:19935–19951. doi: 10.1074/jbc.M117.812792. PubMed DOI PMC
Diggle SP, et al. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 2006;8:1095–1104. doi: 10.1111/j.1462-2920.2006.001001.x. PubMed DOI
Bertolotti B, et al. Polyvalent C-glycomimetics based on l-fucose or d-mannose as potent DC-SIGN antagonists. Org. Biomol. Chem. 2017;15:3995–4004. doi: 10.1039/C7OB00322F. PubMed DOI
Bertolotti B, et al. Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands. Carbohydr. Res. 2016;435:7–18. doi: 10.1016/j.carres.2016.09.005. PubMed DOI
Kašáková M, et al. Selectivity of original C-hexopyranosyl calix[4]arene conjugates towards lectins of different origin. Carbohydr. Res. 2018;469:60–72. doi: 10.1016/j.carres.2018.08.012. PubMed DOI
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI
Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002;67:3057–3064. doi: 10.1021/jo011148j. PubMed DOI
Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem. Rev. 2002;102:555–578. doi: 10.1021/cr000418f. PubMed DOI
Cecioni S, Imberty A, Vidal S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2015;115:525–561. doi: 10.1021/cr500303t. PubMed DOI
Bernardi A, et al. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 2013;42:4709–4727. doi: 10.1039/C2CS35408J. PubMed DOI PMC
Tabarani G, et al. DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain. J. Biol. Chem. 2009;284:21229–21240. doi: 10.1074/jbc.M109.021204. PubMed DOI PMC
Jančaříková, G. et al. Synthesis of α-L-fucopyranoside-presenting glycoclusters and investigation of their interaction with recombinant Photorhabdus asymbiotica lectin (PHL). Chem. - Eur. J., 10.1002/chem.201705853 (2018). PubMed
Mitchell EP, et al. High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 Å resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Proteins Struct. Funct. Bioinforma. 2004;58:735–746. doi: 10.1002/prot.20330. PubMed DOI
Boukerb AM, et al. Antiadhesive properties of glycoclusters against Pseudomonas aeruginosa lung infection. J. Med. Chem. 2014;57:10275–10289. doi: 10.1021/jm500038p. PubMed DOI
Yu G, et al. A Sugar-functionalized amphiphilic pillar[5]arene: Synthesis, self-assembly in water, and application in bacterial cell agglutination. J. Am. Chem. Soc. 2013;135:10310–10313. doi: 10.1021/ja405237q. PubMed DOI
Gestwicki JE, Strong LE, Cairo CW, Boehm FJ, Kiessling LL. Cell aggregation by scaffolded receptor clusters. Chem. Biol. 2002;9:163–169. doi: 10.1016/S1074-5521(02)00102-3. PubMed DOI
Adamová L, Malinovská L, Wimmerová M. New sensitive detection method for lectin hemagglutination using microscopy. Microsc. Res. Tech. 2014;77:841–849. doi: 10.1002/jemt.22407. PubMed DOI
Wiseman T, Williston S, Brandts JF, Lin L-N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 1989;179:131–137. doi: 10.1016/0003-2697(89)90213-3. PubMed DOI
Mueller U, et al. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 2012;19:442–449. doi: 10.1107/S0909049512006395. PubMed DOI PMC
Krug M, Weiss MS, Heinemann U, Mueller U. XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Crystallogr. 2012;45:568–572. doi: 10.1107/S0021889812011715. DOI
Winn MD, et al. Overview of the CCP 4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Murshudov GN, et al. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Lebedev AA, et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D Biol. Crystallogr. 2012;68:431–440. doi: 10.1107/S090744491200251X. PubMed DOI PMC
Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC