Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression

K Brozkova, E Budinska, P Bouchal, L Hernychova, D Knoflickova, D Valik, R Vyzula, B Vojtesek, R Nenutil

. 2008 ; 10 (3) : R48.

Language English Country Great Britain

INTRODUCTION: Microarray-based gene expression profiling represents a major breakthrough for understanding the molecular complexity of breast cancer. cDNA expression profiles cannot detect changes in activities that arise from post-translational modifications, however, and therefore do not provide a complete picture of all biologically important changes that occur in tumors. Additional opportunities to identify and/or validate molecular signatures of breast carcinomas are provided by proteomic approaches. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) offers high-throughput protein profiling, leading to extraction of protein array data, calling for effective and appropriate use of bioinformatics and statistical tools. METHODS: Whole tissue lysates of 105 breast carcinomas were analyzed on IMAC 30 ProteinChip Arrays (Bio-Rad, Hercules, CA, USA) using the ProteinChip Reader Model PBS IIc (Bio-Rad) and Ciphergen ProteinChip software (Bio-Rad, Hercules, CA, USA). Cluster analysis of protein spectra was performed to identify protein patterns potentially related to established clinicopathological variables and/or tumor markers. RESULTS: Unsupervised hierarchical clustering of 130 peaks detected in spectra from breast cancer tissue lysates provided six clusters of peaks and five groups of patients differing significantly in tumor type, nuclear grade, presence of hormonal receptors, mucin 1 and cytokeratin 5/6 or cytokeratin 14. These tumor groups resembled closely luminal types A and B, basal and HER2-like carcinomas. CONCLUSION: Our results show similar clustering of tumors to those provided by cDNA expression profiles of breast carcinomas. This fact testifies the validity of the SELDI-TOF MS proteomic approach in such a type of study. As SELDI-TOF MS provides different information from cDNA expression profiles, the results suggest the technique's potential to supplement and expand our knowledge of breast cancer, to identify novel biomarkers and to produce clinically useful classifications of breast carcinomas.

000      
02741naa 2200493 a 4500
001      
bmc11004770
003      
CZ-PrNML
005      
20121115102133.0
008      
110309s2008 xxk e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Hrazdilová, Kristýna. $7 pna2004261747
245    10
$a Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression / $c K Brozkova, E Budinska, P Bouchal, L Hernychova, D Knoflickova, D Valik, R Vyzula, B Vojtesek, R Nenutil
314    __
$a Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
520    9_
$a INTRODUCTION: Microarray-based gene expression profiling represents a major breakthrough for understanding the molecular complexity of breast cancer. cDNA expression profiles cannot detect changes in activities that arise from post-translational modifications, however, and therefore do not provide a complete picture of all biologically important changes that occur in tumors. Additional opportunities to identify and/or validate molecular signatures of breast carcinomas are provided by proteomic approaches. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) offers high-throughput protein profiling, leading to extraction of protein array data, calling for effective and appropriate use of bioinformatics and statistical tools. METHODS: Whole tissue lysates of 105 breast carcinomas were analyzed on IMAC 30 ProteinChip Arrays (Bio-Rad, Hercules, CA, USA) using the ProteinChip Reader Model PBS IIc (Bio-Rad) and Ciphergen ProteinChip software (Bio-Rad, Hercules, CA, USA). Cluster analysis of protein spectra was performed to identify protein patterns potentially related to established clinicopathological variables and/or tumor markers. RESULTS: Unsupervised hierarchical clustering of 130 peaks detected in spectra from breast cancer tissue lysates provided six clusters of peaks and five groups of patients differing significantly in tumor type, nuclear grade, presence of hormonal receptors, mucin 1 and cytokeratin 5/6 or cytokeratin 14. These tumor groups resembled closely luminal types A and B, basal and HER2-like carcinomas. CONCLUSION: Our results show similar clustering of tumors to those provided by cDNA expression profiles of breast carcinomas. This fact testifies the validity of the SELDI-TOF MS proteomic approach in such a type of study. As SELDI-TOF MS provides different information from cDNA expression profiles, the results suggest the technique's potential to supplement and expand our knowledge of breast cancer, to identify novel biomarkers and to produce clinically useful classifications of breast carcinomas.
650    _2
$a nádory prsu $x genetika $x metabolismus $7 D001943
650    _2
$a shluková analýza $7 D016000
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a komplementární DNA $x metabolismus $7 D018076
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a lidé $7 D006801
650    _2
$a biologické modely $7 D008954
650    _2
$a diagnostické techniky molekulární $7 D025202
650    _2
$a čipová analýza proteinů $x metody $7 D040081
650    _2
$a posttranslační úpravy proteinů $7 D011499
650    _2
$a proteomika $x metody $7 D040901
650    _2
$a spektrometrie hmotnostní - ionizace laserem za účasti matrice $x metody $7 D019032
650    _2
$a nádorové biomarkery $7 D014408
650    _2
$a financování organizované $7 D005381
700    1_
$a Budinská, Eva $7 xx0142844
700    1_
$a Bouchal, Pavel, $7 xx0128495 $d 1975-
700    1_
$a Hernychová, Lenka, $d 1965- $7 xx0073983
700    1_
$a Knoflíčková, Dana. $7 xx0238307
700    1_
$a Valík, Dalibor $7 xx0061177
700    1_
$a Vyzula, Rostislav, $d 1952- $7 nlk20000083661
700    1_
$a Vojtěšek, Bořivoj, $d 1960- $7 xx0001694
700    1_
$a Nenutil, Rudolf $7 xx0057842
773    0_
$t Breast Cancer Research $w MED00006602 $g Roč. 10, č. 3 (2008), s. R48
910    __
$a ABA008 $b x $y 1
990    __
$a 20110414093454 $b ABA008
991    __
$a 20121115102150 $b ABA008
999    __
$a ok $b bmc $g 832148 $s 696808
BAS    __
$a 3
BMC    __
$a 2008 $b 10 $c 3 $d R48 $m Breast cancer research $n Breast Cancer Res $x MED00006602
LZP    __
$a 2011-4B/vtme

Find record