-
Je něco špatně v tomto záznamu ?
Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression
K Brozkova, E Budinska, P Bouchal, L Hernychova, D Knoflickova, D Valik, R Vyzula, B Vojtesek, R Nenutil
Jazyk angličtina Země Velká Británie
NLK
BioMedCentral
od 1999-12-01
BioMedCentral Open Access
od 1999
Directory of Open Access Journals
od 2000
Free Medical Journals
od 1999 do Před 2 roky
PubMed Central
od 1999
Europe PubMed Central
od 1999
Open Access Digital Library
od 1999-01-01
Open Access Digital Library
od 1999-07-01
Open Access Digital Library
od 2000-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1999
Springer Nature OA/Free Journals
od 1999-12-01
- MeSH
- biologické modely MeSH
- čipová analýza proteinů metody MeSH
- diagnostické techniky molekulární MeSH
- financování organizované MeSH
- komplementární DNA metabolismus MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádory prsu genetika metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteomika metody MeSH
- regulace genové exprese MeSH
- shluková analýza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- stanovení celkové genové exprese MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
INTRODUCTION: Microarray-based gene expression profiling represents a major breakthrough for understanding the molecular complexity of breast cancer. cDNA expression profiles cannot detect changes in activities that arise from post-translational modifications, however, and therefore do not provide a complete picture of all biologically important changes that occur in tumors. Additional opportunities to identify and/or validate molecular signatures of breast carcinomas are provided by proteomic approaches. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) offers high-throughput protein profiling, leading to extraction of protein array data, calling for effective and appropriate use of bioinformatics and statistical tools. METHODS: Whole tissue lysates of 105 breast carcinomas were analyzed on IMAC 30 ProteinChip Arrays (Bio-Rad, Hercules, CA, USA) using the ProteinChip Reader Model PBS IIc (Bio-Rad) and Ciphergen ProteinChip software (Bio-Rad, Hercules, CA, USA). Cluster analysis of protein spectra was performed to identify protein patterns potentially related to established clinicopathological variables and/or tumor markers. RESULTS: Unsupervised hierarchical clustering of 130 peaks detected in spectra from breast cancer tissue lysates provided six clusters of peaks and five groups of patients differing significantly in tumor type, nuclear grade, presence of hormonal receptors, mucin 1 and cytokeratin 5/6 or cytokeratin 14. These tumor groups resembled closely luminal types A and B, basal and HER2-like carcinomas. CONCLUSION: Our results show similar clustering of tumors to those provided by cDNA expression profiles of breast carcinomas. This fact testifies the validity of the SELDI-TOF MS proteomic approach in such a type of study. As SELDI-TOF MS provides different information from cDNA expression profiles, the results suggest the technique's potential to supplement and expand our knowledge of breast cancer, to identify novel biomarkers and to produce clinically useful classifications of breast carcinomas.
- 000
- 02741naa 2200493 a 4500
- 001
- bmc11004770
- 003
- CZ-PrNML
- 005
- 20121115102133.0
- 008
- 110309s2008 xxk e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Hrazdilová, Kristýna. $7 pna2004261747
- 245 10
- $a Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression / $c K Brozkova, E Budinska, P Bouchal, L Hernychova, D Knoflickova, D Valik, R Vyzula, B Vojtesek, R Nenutil
- 314 __
- $a Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
- 520 9_
- $a INTRODUCTION: Microarray-based gene expression profiling represents a major breakthrough for understanding the molecular complexity of breast cancer. cDNA expression profiles cannot detect changes in activities that arise from post-translational modifications, however, and therefore do not provide a complete picture of all biologically important changes that occur in tumors. Additional opportunities to identify and/or validate molecular signatures of breast carcinomas are provided by proteomic approaches. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) offers high-throughput protein profiling, leading to extraction of protein array data, calling for effective and appropriate use of bioinformatics and statistical tools. METHODS: Whole tissue lysates of 105 breast carcinomas were analyzed on IMAC 30 ProteinChip Arrays (Bio-Rad, Hercules, CA, USA) using the ProteinChip Reader Model PBS IIc (Bio-Rad) and Ciphergen ProteinChip software (Bio-Rad, Hercules, CA, USA). Cluster analysis of protein spectra was performed to identify protein patterns potentially related to established clinicopathological variables and/or tumor markers. RESULTS: Unsupervised hierarchical clustering of 130 peaks detected in spectra from breast cancer tissue lysates provided six clusters of peaks and five groups of patients differing significantly in tumor type, nuclear grade, presence of hormonal receptors, mucin 1 and cytokeratin 5/6 or cytokeratin 14. These tumor groups resembled closely luminal types A and B, basal and HER2-like carcinomas. CONCLUSION: Our results show similar clustering of tumors to those provided by cDNA expression profiles of breast carcinomas. This fact testifies the validity of the SELDI-TOF MS proteomic approach in such a type of study. As SELDI-TOF MS provides different information from cDNA expression profiles, the results suggest the technique's potential to supplement and expand our knowledge of breast cancer, to identify novel biomarkers and to produce clinically useful classifications of breast carcinomas.
- 650 _2
- $a nádory prsu $x genetika $x metabolismus $7 D001943
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a komplementární DNA $x metabolismus $7 D018076
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a regulace genové exprese $7 D005786
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a diagnostické techniky molekulární $7 D025202
- 650 _2
- $a čipová analýza proteinů $x metody $7 D040081
- 650 _2
- $a posttranslační úpravy proteinů $7 D011499
- 650 _2
- $a proteomika $x metody $7 D040901
- 650 _2
- $a spektrometrie hmotnostní - ionizace laserem za účasti matrice $x metody $7 D019032
- 650 _2
- $a nádorové biomarkery $7 D014408
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Budinská, Eva $7 xx0142844
- 700 1_
- $a Bouchal, Pavel, $7 xx0128495 $d 1975-
- 700 1_
- $a Hernychová, Lenka, $d 1965- $7 xx0073983
- 700 1_
- $a Knoflíčková, Dana. $7 xx0238307
- 700 1_
- $a Valík, Dalibor $7 xx0061177
- 700 1_
- $a Vyzula, Rostislav, $d 1952- $7 nlk20000083661
- 700 1_
- $a Vojtěšek, Bořivoj, $d 1960- $7 xx0001694
- 700 1_
- $a Nenutil, Rudolf $7 xx0057842
- 773 0_
- $t Breast Cancer Research $w MED00006602 $g Roč. 10, č. 3 (2008), s. R48
- 910 __
- $a ABA008 $b x $y 1
- 990 __
- $a 20110414093454 $b ABA008
- 991 __
- $a 20121115102150 $b ABA008
- 999 __
- $a ok $b bmc $g 832148 $s 696808
- BAS __
- $a 3
- BMC __
- $a 2008 $b 10 $c 3 $d R48 $m Breast cancer research $n Breast Cancer Res $x MED00006602
- LZP __
- $a 2011-4B/vtme