-
Je něco špatně v tomto záznamu ?
A nitty-gritty aspect of correlation and network inference from gene expression data
LB Klebanov, AY Yakovlev
Jazyk angličtina Země Velká Británie
Typ dokumentu Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
NLK
BioMedCentral
od 2006-12-01
BioMedCentral Open Access
od 2006
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2006-01-31
ROAD: Directory of Open Access Scholarly Resources
od 2006
Springer Nature OA/Free Journals
od 2006-12-01
- MeSH
- lidé MeSH
- modely genetické MeSH
- neparametrická statistika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody statistika a číselné údaje MeSH
- stanovení celkové genové exprese metody statistika a číselné údaje MeSH
- výpočetní biologie metody statistika a číselné údaje MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: All currently available methods of network/association inference from microarray gene expression measurements implicitly assume that such measurements represent the actual expression levels of different genes within each cell included in the biological sample under study. Contrary to this common belief, modern microarray technology produces signals aggregated over a random number of individual cells, a "nitty-gritty" aspect of such arrays, thereby causing a random effect that distorts the correlation structure of intra-cellular gene expression levels. RESULTS: This paper provides a theoretical consideration of the random effect of signal aggregation and its implications for correlation analysis and network inference. An attempt is made to quantitatively assess the magnitude of this effect from real data. Some preliminary ideas are offered to mitigate the consequences of random signal aggregation in the analysis of gene expression data. CONCLUSION: Resulting from the summation of expression intensities over a random number of individual cells, the observed signals may not adequately reflect the true dependence structure of intra-cellular gene expression levels needed as a source of information for network reconstruction. Whether the reported effect is extrime or not, the important point, is to reconize and incorporate such signal source for proper inference. The usefulness of inference on genetic regulatory structures from microarray data depends critically on the ability of investigators to overcome this obstacle in a scientifically sound way. REVIEWERS: This article was reviewed by Byung Soo KIM, Jeanne Kowalski and Geoff McLachlan.
- 000
- 01989naa 2200337 a 4500
- 001
- bmc11006345
- 003
- CZ-PrNML
- 005
- 20130618091422.0
- 008
- 110401s2008 xxk e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Klebanov, Lev. $7 _AN055723
- 245 12
- $a A nitty-gritty aspect of correlation and network inference from gene expression data / $c LB Klebanov, AY Yakovlev
- 314 __
- $a Department of Probability and Statistics, Charles University, Sokolovska 83, Praha-8, CZ-18675, Czech Republic. levkleb@yahoo.com
- 520 9_
- $a BACKGROUND: All currently available methods of network/association inference from microarray gene expression measurements implicitly assume that such measurements represent the actual expression levels of different genes within each cell included in the biological sample under study. Contrary to this common belief, modern microarray technology produces signals aggregated over a random number of individual cells, a "nitty-gritty" aspect of such arrays, thereby causing a random effect that distorts the correlation structure of intra-cellular gene expression levels. RESULTS: This paper provides a theoretical consideration of the random effect of signal aggregation and its implications for correlation analysis and network inference. An attempt is made to quantitatively assess the magnitude of this effect from real data. Some preliminary ideas are offered to mitigate the consequences of random signal aggregation in the analysis of gene expression data. CONCLUSION: Resulting from the summation of expression intensities over a random number of individual cells, the observed signals may not adequately reflect the true dependence structure of intra-cellular gene expression levels needed as a source of information for network reconstruction. Whether the reported effect is extrime or not, the important point, is to reconize and incorporate such signal source for proper inference. The usefulness of inference on genetic regulatory structures from microarray data depends critically on the ability of investigators to overcome this obstacle in a scientifically sound way. REVIEWERS: This article was reviewed by Byung Soo KIM, Jeanne Kowalski and Geoff McLachlan.
- 590 __
- $a bohemika - dle Pubmed
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a výpočetní biologie $x metody $x statistika a číselné údaje $7 D019295
- 650 _2
- $a stanovení celkové genové exprese $x metody $x statistika a číselné údaje $7 D020869
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a modely genetické $7 D008957
- 650 _2
- $a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $x metody $x statistika a číselné údaje $7 D020411
- 650 _2
- $a neparametrická statistika $7 D018709
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Yakovlev, Andrei Yu
- 773 0_
- $t Biology Direct [Electronic Resource] $w MED00180067 $g Roč. 3, č. 1, 35 (2008), s. 1-14
- 910 __
- $a ABA008 $b x $y 2
- 990 __
- $a 20110414103629 $b ABA008
- 991 __
- $a 20130618091824 $b ABA008
- 999 __
- $a ok $b bmc $g 833947 $s 698444
- BAS __
- $a 3
- BMC __
- $a 2008 $b 3 $c 1, 35 $d 1-14 $m Biology direct $n Biol Direct $x MED00180067
- LZP __
- $a 2011-1B09/jjme