• Je něco špatně v tomto záznamu ?

A nitty-gritty aspect of correlation and network inference from gene expression data

LB Klebanov, AY Yakovlev

. 2008 ; 3 (1, 35) : 1-14.

Jazyk angličtina Země Velká Británie

Typ dokumentu Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc11006345

BACKGROUND: All currently available methods of network/association inference from microarray gene expression measurements implicitly assume that such measurements represent the actual expression levels of different genes within each cell included in the biological sample under study. Contrary to this common belief, modern microarray technology produces signals aggregated over a random number of individual cells, a "nitty-gritty" aspect of such arrays, thereby causing a random effect that distorts the correlation structure of intra-cellular gene expression levels. RESULTS: This paper provides a theoretical consideration of the random effect of signal aggregation and its implications for correlation analysis and network inference. An attempt is made to quantitatively assess the magnitude of this effect from real data. Some preliminary ideas are offered to mitigate the consequences of random signal aggregation in the analysis of gene expression data. CONCLUSION: Resulting from the summation of expression intensities over a random number of individual cells, the observed signals may not adequately reflect the true dependence structure of intra-cellular gene expression levels needed as a source of information for network reconstruction. Whether the reported effect is extrime or not, the important point, is to reconize and incorporate such signal source for proper inference. The usefulness of inference on genetic regulatory structures from microarray data depends critically on the ability of investigators to overcome this obstacle in a scientifically sound way. REVIEWERS: This article was reviewed by Byung Soo KIM, Jeanne Kowalski and Geoff McLachlan.

000      
01989naa 2200337 a 4500
001      
bmc11006345
003      
CZ-PrNML
005      
20130618091422.0
008      
110401s2008 xxk e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Klebanov, Lev. $7 _AN055723
245    12
$a A nitty-gritty aspect of correlation and network inference from gene expression data / $c LB Klebanov, AY Yakovlev
314    __
$a Department of Probability and Statistics, Charles University, Sokolovska 83, Praha-8, CZ-18675, Czech Republic. levkleb@yahoo.com
520    9_
$a BACKGROUND: All currently available methods of network/association inference from microarray gene expression measurements implicitly assume that such measurements represent the actual expression levels of different genes within each cell included in the biological sample under study. Contrary to this common belief, modern microarray technology produces signals aggregated over a random number of individual cells, a "nitty-gritty" aspect of such arrays, thereby causing a random effect that distorts the correlation structure of intra-cellular gene expression levels. RESULTS: This paper provides a theoretical consideration of the random effect of signal aggregation and its implications for correlation analysis and network inference. An attempt is made to quantitatively assess the magnitude of this effect from real data. Some preliminary ideas are offered to mitigate the consequences of random signal aggregation in the analysis of gene expression data. CONCLUSION: Resulting from the summation of expression intensities over a random number of individual cells, the observed signals may not adequately reflect the true dependence structure of intra-cellular gene expression levels needed as a source of information for network reconstruction. Whether the reported effect is extrime or not, the important point, is to reconize and incorporate such signal source for proper inference. The usefulness of inference on genetic regulatory structures from microarray data depends critically on the ability of investigators to overcome this obstacle in a scientifically sound way. REVIEWERS: This article was reviewed by Byung Soo KIM, Jeanne Kowalski and Geoff McLachlan.
590    __
$a bohemika - dle Pubmed
650    _2
$a zvířata $7 D000818
650    _2
$a výpočetní biologie $x metody $x statistika a číselné údaje $7 D019295
650    _2
$a stanovení celkové genové exprese $x metody $x statistika a číselné údaje $7 D020869
650    _2
$a lidé $7 D006801
650    _2
$a modely genetické $7 D008957
650    _2
$a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $x metody $x statistika a číselné údaje $7 D020411
650    _2
$a neparametrická statistika $7 D018709
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Yakovlev, Andrei Yu
773    0_
$t Biology Direct [Electronic Resource] $w MED00180067 $g Roč. 3, č. 1, 35 (2008), s. 1-14
910    __
$a ABA008 $b x $y 2
990    __
$a 20110414103629 $b ABA008
991    __
$a 20130618091824 $b ABA008
999    __
$a ok $b bmc $g 833947 $s 698444
BAS    __
$a 3
BMC    __
$a 2008 $b 3 $c 1, 35 $d 1-14 $m Biology direct $n Biol Direct $x MED00180067
LZP    __
$a 2011-1B09/jjme

Najít záznam