-
Something wrong with this record ?
Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling
M. Babič, D. Horák, P. Jendelová, K. Glogarová, V. Herynek, M. Trchová, K. Likavčanová, P. Lesný, E. Pollert, M. Hájek, E. Syková
Language English Country United States
- MeSH
- Acrylamides chemistry MeSH
- Staining and Labeling methods MeSH
- Financing, Organized MeSH
- Rats MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Magnetic Resonance Imaging MeSH
- Mesenchymal Stem Cells cytology metabolism ultrastructure MeSH
- Nanoparticles chemistry MeSH
- Scattering, Radiation MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Microscopy, Electron, Transmission MeSH
- Cell Survival MeSH
- Gelatin metabolism MeSH
- Ferric Compounds chemical synthesis chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
Maghemite (gamma-Fe2O3) nanoparticles were obtained by the coprecipitation of Fe(II) and Fe (III) salts with ammonium hydroxide followed by oxidation with sodium hypochlorite. Solution radical polymerization of N,N-dimethylacrylamide(DMAAm) in the presence of maghemite nanoparticles yielded poly(N,N-dimethylacrylamide)(PDMAAm)-coated maghemite nanoparticles. The presence of PDMAAm on the maghemite particle surface was confirmed by elemental analysis and ATR FTIR spectroscopy. Other methods of nanoparticle characterization involved scanning and transmission electron microscopy, atomic adsorption spectroscopy (AAS), and dynamic light scattering (DLS). The conversion of DMAAm during polymerization and the molecular weight of PDMAAmbound to maghemite were determined by using gas and size-exclusion chromatography, respectively. The effect of ionic 4,4'-azobis(4-cyanovaleric acid) (ACVA) initiator on nanoparticle morphology was elucidated. The nanoparticles exhibited long-term colloidal stability in water or physiological buffer. Rat and human bone marrow mesenchymal stem cells (MSCs) were labeled with uncoated and PDMAAm-coated maghemite nanoparticles and with Endorem as a control. Uptake of the nanoparticles was evaluated by Prussian Blue staining, transmission electron microscopy, T(2)-MR relaxometry, and iron content analysis. Significant differences in labeling efficiency were found for human and rat cells. PDMAAm-modified nanoparticles demonstrated a higher efficiency of intracellular uptake into human cells in comparison with that of dextran-modified (Endorem) and unmodified nanoparticles. In gelatin, even a small number of labeled cells changed the contrast in MR images. PDMAAmcoatednanoparticles provided the highest T(2) relaxivity of all the investigated particles. In vivo MR imaging ofPDMAAm-modified iron oxide-labeled rMSCs implanted in a rat brain confirmed their better resolution compared with Endorem-labeled cells.
- 000
- 04031naa 2200553 a 4500
- 001
- bmc11009696
- 003
- CZ-PrNML
- 005
- 20130129164334.0
- 008
- 110511s2009 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Babič, Michal $7 xx0109464
- 245 10
- $a Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling / $c M. Babič, D. Horák, P. Jendelová, K. Glogarová, V. Herynek, M. Trchová, K. Likavčanová, P. Lesný, E. Pollert, M. Hájek, E. Syková
- 314 __
- $a Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 16206 Prague 6, Czech Republic.
- 520 9_
- $a Maghemite (gamma-Fe2O3) nanoparticles were obtained by the coprecipitation of Fe(II) and Fe (III) salts with ammonium hydroxide followed by oxidation with sodium hypochlorite. Solution radical polymerization of N,N-dimethylacrylamide(DMAAm) in the presence of maghemite nanoparticles yielded poly(N,N-dimethylacrylamide)(PDMAAm)-coated maghemite nanoparticles. The presence of PDMAAm on the maghemite particle surface was confirmed by elemental analysis and ATR FTIR spectroscopy. Other methods of nanoparticle characterization involved scanning and transmission electron microscopy, atomic adsorption spectroscopy (AAS), and dynamic light scattering (DLS). The conversion of DMAAm during polymerization and the molecular weight of PDMAAmbound to maghemite were determined by using gas and size-exclusion chromatography, respectively. The effect of ionic 4,4'-azobis(4-cyanovaleric acid) (ACVA) initiator on nanoparticle morphology was elucidated. The nanoparticles exhibited long-term colloidal stability in water or physiological buffer. Rat and human bone marrow mesenchymal stem cells (MSCs) were labeled with uncoated and PDMAAm-coated maghemite nanoparticles and with Endorem as a control. Uptake of the nanoparticles was evaluated by Prussian Blue staining, transmission electron microscopy, T(2)-MR relaxometry, and iron content analysis. Significant differences in labeling efficiency were found for human and rat cells. PDMAAm-modified nanoparticles demonstrated a higher efficiency of intracellular uptake into human cells in comparison with that of dextran-modified (Endorem) and unmodified nanoparticles. In gelatin, even a small number of labeled cells changed the contrast in MR images. PDMAAmcoatednanoparticles provided the highest T(2) relaxivity of all the investigated particles. In vivo MR imaging ofPDMAAm-modified iron oxide-labeled rMSCs implanted in a rat brain confirmed their better resolution compared with Endorem-labeled cells.
- 590 __
- $a bohemika - dle Pubmed
- 650 _2
- $a akrylamidy $x chemie $7 D000178
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a viabilita buněk $7 D002470
- 650 _2
- $a Ferric Compounds $x cs [Chemical Synthesis]
- 650 _2
- $a železité sloučeniny $x chemická syntéza $x chemie $x metabolismus $7 D005290
- 650 _2
- $a želatina $x metabolismus $7 D005780
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a magnetická rezonanční spektroskopie $7 D009682
- 650 _2
- $a mezenchymální kmenové buňky $x cytologie $x metabolismus $x ultrastruktura $7 D059630
- 650 _2
- $a transmisní elektronová mikroskopie $7 D046529
- 650 _2
- $a nanočástice $x chemie $7 D053758
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a radiační rozptyl $7 D012542
- 650 _2
- $a spektroskopie infračervená s Fourierovou transformací $7 D017550
- 650 _2
- $a barvení a značení $x metody $7 D013194
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Horák, Daniel $7 xx0076519
- 700 1_
- $a Jendelová, Pavla, $d 1965- $7 xx0068971
- 700 1_
- $a Glogarová, Kateřina. $7 _AN033985
- 700 1_
- $a Herynek, Vít, $d 1967- $7 xx0069420
- 700 1_
- $a Trchová, Miroslava $7 xx0104474
- 700 1_
- $a Likavčanová, Katarína. $7 _AN049556
- 700 1_
- $a Lesný, Petr, $7 xx0060590 $d 1972-
- 700 1_
- $a Pollert, Emil, $d 1938-2014 $7 js20070119017
- 700 1_
- $a Hájek, Milan, $d 1947- $7 xx0074172
- 700 1_
- $a Syková, Eva, $d 1944- $7 jn20000710633
- 773 0_
- $t Bioconjugate Chemistry $w MED00006454 $g Roč. 20, č. 2 (2009), s. 283-294
- 910 __
- $a ABA008 $b x $y 2
- 990 __
- $a 20110513110702 $b ABA008
- 991 __
- $a 20121101123822 $b ABA008
- 999 __
- $a ok $b bmc $g 839119 $s 703089
- BAS __
- $a 3
- BMC __
- $a 2009 $b 20 $c 2 $d 283-294 $m Bioconjugate chemistry $n Bioconjug Chem $x MED00006454
- LZP __
- $a 2011-2B09/jvme