-
Je něco špatně v tomto záznamu ?
Optical saturation as a versatile tool to enhance resolution in confocal microscopy
J Humpolickova, A Benda, J Enderlein
Jazyk angličtina Země Spojené státy americké
Typ dokumentu práce podpořená grantem
NLK
Cell Press Free Archives
od 1960-01-01 do Před 1 rokem
Free Medical Journals
od 1960 do Před 1 rokem
Freely Accessible Science Journals
od 1960 do Před 12 měsíci
PubMed Central
od 1960 do Před 1 rokem
Europe PubMed Central
od 1960 do Před 1 rokem
Open Access Digital Library
od 1960-09-01
Elsevier Open Access Journals
od 1960-09-01 do 2018-02-06
Elsevier Open Archive Journals
od 1960-09-01 do Před 1 rokem
- MeSH
- biofyzika metody MeSH
- buněčná membrána metabolismus MeSH
- design vybavení MeSH
- fluorescenční barviva MeSH
- konfokální mikroskopie metody přístrojové vybavení MeSH
- lasery MeSH
- membránové transportní proteiny metabolismus MeSH
- normální rozdělení MeSH
- optika a fotonika MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- světlo MeSH
- terciární struktura proteinů MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- Publikační typ
- práce podpořená grantem MeSH
One of the most actively developing areas in fluorescence microscopy is the achievement of spatial resolution below Abbe's diffraction limit, which restricts the resolution to several hundreds of nanometers. Most of the approaches in use at this time require a complex optical setup, a difficult mathematical treatment, or usage of dyes with special photophysical properties. In this work, we present a new, to our knowledge, approach in confocal microscopy that enhances the resolution moderately but is both technically and computationally simple. As it is based on the saturation of the transition from the ground state to the first excited state, it is universally applicable with respect to the dye used. The idea of the method presented is based on a principle similar to that underlying saturation excitation microscopy, but instead of applying harmonically modulated excitation light, the fluorophores are excited by picosecond laser pulses at different intensities, resulting in different levels of saturation. We show that the method can be easily combined with the concept of triplet relaxation, which by tuning the dark periods between pulses helps to suppress the formation of a photolabile triplet state and effectively reduces photobleaching. We demonstrate our approach imaging GFP-labeled protein patches within the plasma membrane of yeast cells.
- 000
- 02984naa a2200409 a 4500
- 001
- bmc12008477
- 003
- CZ-PrNML
- 005
- 20201109094446.0
- 008
- 120316s2009 xxu eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $d ABA008
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Humpolíčková, Jana. $7 xx0274004 $u J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 245 10
- $a Optical saturation as a versatile tool to enhance resolution in confocal microscopy / $c J Humpolickova, A Benda, J Enderlein
- 520 9_
- $a One of the most actively developing areas in fluorescence microscopy is the achievement of spatial resolution below Abbe's diffraction limit, which restricts the resolution to several hundreds of nanometers. Most of the approaches in use at this time require a complex optical setup, a difficult mathematical treatment, or usage of dyes with special photophysical properties. In this work, we present a new, to our knowledge, approach in confocal microscopy that enhances the resolution moderately but is both technically and computationally simple. As it is based on the saturation of the transition from the ground state to the first excited state, it is universally applicable with respect to the dye used. The idea of the method presented is based on a principle similar to that underlying saturation excitation microscopy, but instead of applying harmonically modulated excitation light, the fluorophores are excited by picosecond laser pulses at different intensities, resulting in different levels of saturation. We show that the method can be easily combined with the concept of triplet relaxation, which by tuning the dark periods between pulses helps to suppress the formation of a photolabile triplet state and effectively reduces photobleaching. We demonstrate our approach imaging GFP-labeled protein patches within the plasma membrane of yeast cells.
- 590 __
- $a bohemika - dle Pubmed
- 650 02
- $a biofyzika $x metody $7 D001703
- 650 02
- $a buněčná membrána $x metabolismus $7 D002462
- 650 02
- $a design vybavení $7 D004867
- 650 02
- $a fluorescenční barviva $7 D005456
- 650 02
- $a zelené fluorescenční proteiny $x metabolismus $7 D049452
- 650 02
- $a lasery $7 D007834
- 650 02
- $a světlo $7 D008027
- 650 02
- $a membránové transportní proteiny $x metabolismus $7 D026901
- 650 02
- $a konfokální mikroskopie $x metody $x přístrojové vybavení $7 D018613
- 650 02
- $a normální rozdělení $7 D016011
- 650 02
- $a optika a fotonika $7 D055095
- 650 02
- $a terciární struktura proteinů $7 D017434
- 650 02
- $a Saccharomyces cerevisiae $x metabolismus $7 D012441
- 650 02
- $a Saccharomyces cerevisiae - proteiny $x metabolismus $7 D029701
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Benda, Aleš. $7 xx0228989
- 700 1_
- $a Enderlein, Jörg $7 mub2011639103
- 773 0_
- $t Biophysical Journal $p Biophys J $g Roč. 97, č. 9 (2009), s. 2623-2629 $w MED00000774 $x 0006-3495
- 910 __
- $a ABA008 $b x $y 4 $z 0
- 990 __
- $a 20120319124442 $b ABA008
- 991 __
- $a 20201109094445 $b ABA008
- 999 __
- $a ok $b bmc $g 901864 $s 765372
- BAS __
- $a 3
- BMC __
- $a 2009 $b 97 $c 9 $d 2623-2629 $m Biophysical journal $x MED00000774 $i 0006-3495 $n Biophys J
- LZP __
- $a 2012-1Q10/jt