Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A nonlinear electrophoretic model for PeakMaster: I. mathematical model

V. Hruška, M. Riesová, B. Gaš

. 2012 ; 33 (6) : 923-30.

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12023965

We extended the linearized model of electromigration, which is used by PeakMaster, by calculation of nonlinear dispersion and diffusion of zones. The model results in the continuity equation for the shape function ϕ(x,t) of the zone: ϕ(t) = -(v(0) + v(EMD) ϕ)ϕ(x) + δϕ(xx) that contains linear (v(0)) and nonlinear migration (v(EMD)), diffusion (δ), and subscripts x and t stand for partial derivatives. It is valid for both analyte and system zones, and we present equations how to calculate characteristic zone parameters. We solved the continuity equation by Hopf-Cole transformation and applied it for two different initial conditions-the Dirac function resulting in the Haarhoff-van der Linde (HVL) function and the rectangular pulse function, which resulted in a function that we denote as the HVLR function. The nonlinear model was implemented in PeakMaster 5.3, which uses the HVLR function to predict the electropherogram for a given background electrolyte and a composition of the sample. HVLR function also enables to draw electropherograms with significantly wide injection zones, which was not possible before. The nonlinear model was tested by a comparison with a simulation by Simul 5, which solves the complete nonlinear model of electromigration numerically.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12023965
003      
CZ-PrNML
005      
20121207095531.0
007      
ta
008      
120815s2012 gw f 000 0#eng||
009      
AR
024    7_
$a 10.1002/elps.201100554 $2 doi
035    __
$a (PubMed)22528412
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Hruška, Vlastimil $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic.
245    12
$a A nonlinear electrophoretic model for PeakMaster: I. mathematical model / $c V. Hruška, M. Riesová, B. Gaš
520    9_
$a We extended the linearized model of electromigration, which is used by PeakMaster, by calculation of nonlinear dispersion and diffusion of zones. The model results in the continuity equation for the shape function ϕ(x,t) of the zone: ϕ(t) = -(v(0) + v(EMD) ϕ)ϕ(x) + δϕ(xx) that contains linear (v(0)) and nonlinear migration (v(EMD)), diffusion (δ), and subscripts x and t stand for partial derivatives. It is valid for both analyte and system zones, and we present equations how to calculate characteristic zone parameters. We solved the continuity equation by Hopf-Cole transformation and applied it for two different initial conditions-the Dirac function resulting in the Haarhoff-van der Linde (HVL) function and the rectangular pulse function, which resulted in a function that we denote as the HVLR function. The nonlinear model was implemented in PeakMaster 5.3, which uses the HVLR function to predict the electropherogram for a given background electrolyte and a composition of the sample. HVLR function also enables to draw electropherograms with significantly wide injection zones, which was not possible before. The nonlinear model was tested by a comparison with a simulation by Simul 5, which solves the complete nonlinear model of electromigration numerically.
650    _2
$a algoritmy $7 D000465
650    _2
$a počítačová simulace $7 D003198
650    _2
$a elektroforéza $7 D004586
650    _2
$a nelineární dynamika $7 D017711
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Riesová, Martina
700    1_
$a Gaš, Bohuslav
773    0_
$w MED00001508 $t Electrophoresis $x 0173-0835 $g Roč. 33, č. 6 (2012), s. 923-30
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22528412 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m
990    __
$a 20120815 $b ABA008
991    __
$a 20121207095605 $b ABA008
999    __
$a ok $b bmc $g 946113 $s 781293
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 33 $c 6 $d 923-30 $i 0173-0835 $m Electrophoresis $n Electrophoresis $x MED00001508
LZP    __
$a Pubmed-20120815/12/02

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...