Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Limitations of electronic energy transfer in the determination of lipid nanodomain sizes

R. Sachl, J. Humpolíčková, M. Stefl, LB. Johansson, M. Hof,

. 2011 ; 101 (11) : L60-2.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK Cell Press Free Archives from 1960-01-01 to 1 year ago
Free Medical Journals from 1960 to 1 year ago
Freely Accessible Science Journals from 1960 to 12 months ago
PubMed Central from 1960 to 1 year ago
Europe PubMed Central from 1960 to 1 year ago
Open Access Digital Library from 1960-09-01

Even though superresolution microscopy indicates that size of plasma membrane rafts is <20 nm, those structures have never been observed. Förster resonance energy transfer (FRET) is therefore still the most powerful optical method for characterization of such domains. In this letter we investigate relation between nanodomain affinity of a donor-acceptor (D/A) pair and the detectable nanodomain size/area. We show that probes with high affinity to the liquid-ordered (L(o)) phase are required for detecting domain sizes of a few nanometers, and/or domains that occupy a few percent of the bilayer area. A combination of donors and acceptors that prefer different phases is the more favorable approach. For instance, a D/A pair with the distribution constant of donors K(D) = 5 and acceptors K(A) = 0.01 can resolve a broad spectrum of nanodomain sizes. On the other hand, currently available donors and acceptors that prefer the same phase, either the liquid-disordered (L(d)) or L(o) phase, are not so convenient for determining domain sizes <20 nm. Here the detection limits of FRET experiments employing several commonly used D/A pairs have been investigated.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12024101
003      
CZ-PrNML
005      
20121206120614.0
007      
ta
008      
120815s2011 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1016/j.bpj.2011.11.001 $2 doi
035    __
$a (PubMed)22261076
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sachl, Radek $u J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.
245    10
$a Limitations of electronic energy transfer in the determination of lipid nanodomain sizes / $c R. Sachl, J. Humpolíčková, M. Stefl, LB. Johansson, M. Hof,
520    9_
$a Even though superresolution microscopy indicates that size of plasma membrane rafts is <20 nm, those structures have never been observed. Förster resonance energy transfer (FRET) is therefore still the most powerful optical method for characterization of such domains. In this letter we investigate relation between nanodomain affinity of a donor-acceptor (D/A) pair and the detectable nanodomain size/area. We show that probes with high affinity to the liquid-ordered (L(o)) phase are required for detecting domain sizes of a few nanometers, and/or domains that occupy a few percent of the bilayer area. A combination of donors and acceptors that prefer different phases is the more favorable approach. For instance, a D/A pair with the distribution constant of donors K(D) = 5 and acceptors K(A) = 0.01 can resolve a broad spectrum of nanodomain sizes. On the other hand, currently available donors and acceptors that prefer the same phase, either the liquid-disordered (L(d)) or L(o) phase, are not so convenient for determining domain sizes <20 nm. Here the detection limits of FRET experiments employing several commonly used D/A pairs have been investigated.
650    _2
$a sloučeniny boru $x chemie $7 D001896
650    _2
$a karbocyaniny $x chemie $7 D002232
650    _2
$a cholerový toxin $x chemie $7 D002772
650    _2
$a elektrony $7 D004583
650    _2
$a rezonanční přenos fluorescenční energie $x metody $7 D031541
650    _2
$a lipidové dvojvrstvy $x chemie $7 D008051
650    _2
$a membránové mikrodomény $x chemie $7 D021962
650    _2
$a metoda Monte Carlo $7 D009010
650    _2
$a nanočástice $x chemie $7 D053758
650    _2
$a velikost částic $7 D010316
650    _2
$a perylen $x chemie $7 D010569
650    _2
$a fykoerythrin $x chemie $7 D010799
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a rhodaminy $x chemie $7 D012235
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Humpolíčková, Jana
700    1_
$a Stefl, Martin
700    1_
$a Johansson, Lennart B-Å
700    1_
$a Hof, Martin
773    0_
$w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 101, č. 11 (2011), s. L60-2
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22261076 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m
990    __
$a 20120815 $b ABA008
991    __
$a 20121206120647 $b ABA008
999    __
$a ok $b bmc $g 946249 $s 781429
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 101 $c 11 $d L60-2 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
LZP    __
$a Pubmed-20120815/12/02

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...