Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

DNA damage-induced degradation of Cdc25A does not lead to inhibition of Cdk2 activity in mouse embryonic stem cells

Z. Koledová, L.R. Kafková, A. Krämer, V. Divoký

. 2010 ; 28 (3) : 450-461.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12025265

Grantová podpora
NR9508 MZ0 CEP - Centrální evidence projektů

Cyclin-dependent kinase two (Cdk2) is the major regulator of the G1/S transition and the target of an activated G1 checkpoint in somatic cells. In the presence of DNA damage, Cdk2 kinase activity is abrogated by a deficiency of Cdc25A phosphatase, which is marked by Chk1/Chk2 for proteasomal degradation. Embryonic stem cells (ESCs) lack a G1 checkpoint response. In this study, we analyzed the G1 checkpoint pathways in mouse ESCs (mESCs) in the presence of DNA double-strand breaks evoked by ionizing radiation (IR). We show that checkpoint pathways, which operate during G1 phase in somatic cells, are activated in mESCs after IR; however, Cdk2 activity is not abolished. We demonstrate that Cdc25A is degraded in mESCs, but this degradation is not regulated by Chk1 and Chk2 kinases because they are sequestered to the centrosome. Instead, Cdc25A degradation is governed by glycogen synthase kinase-3beta kinase. We hypothesize that Cdc25A degradation does not inhibit Cdk2 activity because a considerable proportion of Cdk2 molecules localize to the cytoplasm and centrosomes in mESCs, where they may be sheltered from regulation by nuclear Cdc25A. Finally, we show that a high Cdk2 activity, which is irresponsive to DNA damage, is the driving force of the rapid escape of mESCs from G1 phase after DNA damage.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12025265
003      
CZ-PrNML
005      
20140731180042.0
007      
ta
008      
120816s2010 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1002/stem.311 $2 doi
035    __
$a (PubMed)20104581
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Koledová, Zuzana $7 jx20110603007 $u Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
245    10
$a DNA damage-induced degradation of Cdc25A does not lead to inhibition of Cdk2 activity in mouse embryonic stem cells / $c Z. Koledová, L.R. Kafková, A. Krämer, V. Divoký
520    9_
$a Cyclin-dependent kinase two (Cdk2) is the major regulator of the G1/S transition and the target of an activated G1 checkpoint in somatic cells. In the presence of DNA damage, Cdk2 kinase activity is abrogated by a deficiency of Cdc25A phosphatase, which is marked by Chk1/Chk2 for proteasomal degradation. Embryonic stem cells (ESCs) lack a G1 checkpoint response. In this study, we analyzed the G1 checkpoint pathways in mouse ESCs (mESCs) in the presence of DNA double-strand breaks evoked by ionizing radiation (IR). We show that checkpoint pathways, which operate during G1 phase in somatic cells, are activated in mESCs after IR; however, Cdk2 activity is not abolished. We demonstrate that Cdc25A is degraded in mESCs, but this degradation is not regulated by Chk1 and Chk2 kinases because they are sequestered to the centrosome. Instead, Cdc25A degradation is governed by glycogen synthase kinase-3beta kinase. We hypothesize that Cdc25A degradation does not inhibit Cdk2 activity because a considerable proportion of Cdk2 molecules localize to the cytoplasm and centrosomes in mESCs, where they may be sheltered from regulation by nuclear Cdc25A. Finally, we show that a high Cdk2 activity, which is irresponsive to DNA damage, is the driving force of the rapid escape of mESCs from G1 phase after DNA damage.
650    _2
$a zvířata $7 D000818
650    _2
$a buněčný cyklus $x genetika $7 D002453
650    _2
$a buněčné linie $7 D002460
650    _2
$a centrozom $x enzymologie $7 D018385
650    _2
$a cyklin-dependentní kinasa 2 $x genetika $7 D051357
650    _2
$a cytoplazma $x enzymologie $7 D003593
650    _2
$a DNA $x genetika $x účinky záření $7 D004247
650    _2
$a poškození DNA $x genetika $7 D004249
650    _2
$a oprava DNA $7 D004260
650    _2
$a embryonální kmenové buňky $x cytologie $x enzymologie $7 D053595
650    _2
$a aktivace enzymů $x genetika $7 D004789
650    _2
$a G1 fáze $x genetika $7 D016193
650    _2
$a CDC geny $x fyziologie $7 D018816
650    _2
$a kinasa 3 glykogensynthasy $x metabolismus $7 D038362
650    _2
$a myši $7 D051379
650    _2
$a proteinkinasy $x genetika $7 D011494
650    _2
$a protein-serin-threoninkinasy $x genetika $7 D017346
650    _2
$a ionizující záření $7 D011839
650    _2
$a signální transdukce $x genetika $7 D015398
650    _2
$a fosfatasy cdc25 $x genetika $7 D020687
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Rašková Kafková, Leona $7 xx0046461 $u Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
700    1#
$a Krämer, Alwin. $7 _AN049714 $u Clinical Cooperation Unit for Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
700    1_
$a Divoký, Vladimír $7 xx0018902 $u Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
773    0_
$w MED00004436 $t Stem cells (Dayton, Ohio) $x 1549-4918 $g Roč. 28, č. 3 (2010), s. 450-461
856    41
$u https://pubmed.ncbi.nlm.nih.gov/20104581 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20140731180400 $b ABA008
999    __
$a ok $b bmc $g 947307 $s 782611
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 28 $c 3 $d 450-461 $i 1549-4918 $m Stem cells $n Stem Cells $x MED00004436
GRA    __
$a NR9508 $p MZ0
LZP    __
$a Pubmed-20120816/10/02

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...