-
Something wrong with this record ?
DNA damage-induced degradation of Cdc25A does not lead to inhibition of Cdk2 activity in mouse embryonic stem cells
Z. Koledová, L.R. Kafková, A. Krämer, V. Divoký
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NR9508
MZ0
CEP Register
Digital library NLK
Full text - Article
Source
NLK
Free Medical Journals
from 1996 to 1 year ago
PubMed
20104581
DOI
10.1002/stem.311
Knihovny.cz E-resources
- MeSH
- Enzyme Activation genetics MeSH
- Cell Line MeSH
- Cell Cycle genetics MeSH
- Genes, cdc physiology MeSH
- Centrosome enzymology MeSH
- Cyclin-Dependent Kinase 2 genetics MeSH
- Cytoplasm enzymology MeSH
- DNA genetics radiation effects MeSH
- Embryonic Stem Cells cytology enzymology MeSH
- cdc25 Phosphatases genetics MeSH
- G1 Phase genetics MeSH
- Radiation, Ionizing MeSH
- Glycogen Synthase Kinase 3 metabolism MeSH
- Mice MeSH
- DNA Repair MeSH
- DNA Damage genetics MeSH
- Protein Serine-Threonine Kinases genetics MeSH
- Protein Kinases genetics MeSH
- Signal Transduction genetics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Cyclin-dependent kinase two (Cdk2) is the major regulator of the G1/S transition and the target of an activated G1 checkpoint in somatic cells. In the presence of DNA damage, Cdk2 kinase activity is abrogated by a deficiency of Cdc25A phosphatase, which is marked by Chk1/Chk2 for proteasomal degradation. Embryonic stem cells (ESCs) lack a G1 checkpoint response. In this study, we analyzed the G1 checkpoint pathways in mouse ESCs (mESCs) in the presence of DNA double-strand breaks evoked by ionizing radiation (IR). We show that checkpoint pathways, which operate during G1 phase in somatic cells, are activated in mESCs after IR; however, Cdk2 activity is not abolished. We demonstrate that Cdc25A is degraded in mESCs, but this degradation is not regulated by Chk1 and Chk2 kinases because they are sequestered to the centrosome. Instead, Cdc25A degradation is governed by glycogen synthase kinase-3beta kinase. We hypothesize that Cdc25A degradation does not inhibit Cdk2 activity because a considerable proportion of Cdk2 molecules localize to the cytoplasm and centrosomes in mESCs, where they may be sheltered from regulation by nuclear Cdc25A. Finally, we show that a high Cdk2 activity, which is irresponsive to DNA damage, is the driving force of the rapid escape of mESCs from G1 phase after DNA damage.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12025265
- 003
- CZ-PrNML
- 005
- 20140731180042.0
- 007
- ta
- 008
- 120816s2010 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1002/stem.311 $2 doi
- 035 __
- $a (PubMed)20104581
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Koledová, Zuzana $7 jx20110603007 $u Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
- 245 10
- $a DNA damage-induced degradation of Cdc25A does not lead to inhibition of Cdk2 activity in mouse embryonic stem cells / $c Z. Koledová, L.R. Kafková, A. Krämer, V. Divoký
- 520 9_
- $a Cyclin-dependent kinase two (Cdk2) is the major regulator of the G1/S transition and the target of an activated G1 checkpoint in somatic cells. In the presence of DNA damage, Cdk2 kinase activity is abrogated by a deficiency of Cdc25A phosphatase, which is marked by Chk1/Chk2 for proteasomal degradation. Embryonic stem cells (ESCs) lack a G1 checkpoint response. In this study, we analyzed the G1 checkpoint pathways in mouse ESCs (mESCs) in the presence of DNA double-strand breaks evoked by ionizing radiation (IR). We show that checkpoint pathways, which operate during G1 phase in somatic cells, are activated in mESCs after IR; however, Cdk2 activity is not abolished. We demonstrate that Cdc25A is degraded in mESCs, but this degradation is not regulated by Chk1 and Chk2 kinases because they are sequestered to the centrosome. Instead, Cdc25A degradation is governed by glycogen synthase kinase-3beta kinase. We hypothesize that Cdc25A degradation does not inhibit Cdk2 activity because a considerable proportion of Cdk2 molecules localize to the cytoplasm and centrosomes in mESCs, where they may be sheltered from regulation by nuclear Cdc25A. Finally, we show that a high Cdk2 activity, which is irresponsive to DNA damage, is the driving force of the rapid escape of mESCs from G1 phase after DNA damage.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčný cyklus $x genetika $7 D002453
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a centrozom $x enzymologie $7 D018385
- 650 _2
- $a cyklin-dependentní kinasa 2 $x genetika $7 D051357
- 650 _2
- $a cytoplazma $x enzymologie $7 D003593
- 650 _2
- $a DNA $x genetika $x účinky záření $7 D004247
- 650 _2
- $a poškození DNA $x genetika $7 D004249
- 650 _2
- $a oprava DNA $7 D004260
- 650 _2
- $a embryonální kmenové buňky $x cytologie $x enzymologie $7 D053595
- 650 _2
- $a aktivace enzymů $x genetika $7 D004789
- 650 _2
- $a G1 fáze $x genetika $7 D016193
- 650 _2
- $a CDC geny $x fyziologie $7 D018816
- 650 _2
- $a kinasa 3 glykogensynthasy $x metabolismus $7 D038362
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a proteinkinasy $x genetika $7 D011494
- 650 _2
- $a protein-serin-threoninkinasy $x genetika $7 D017346
- 650 _2
- $a ionizující záření $7 D011839
- 650 _2
- $a signální transdukce $x genetika $7 D015398
- 650 _2
- $a fosfatasy cdc25 $x genetika $7 D020687
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Rašková Kafková, Leona $7 xx0046461 $u Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
- 700 1#
- $a Krämer, Alwin. $7 _AN049714 $u Clinical Cooperation Unit for Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- 700 1_
- $a Divoký, Vladimír $7 xx0018902 $u Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
- 773 0_
- $w MED00004436 $t Stem cells (Dayton, Ohio) $x 1549-4918 $g Roč. 28, č. 3 (2010), s. 450-461
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20104581 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20140731180400 $b ABA008
- 999 __
- $a ok $b bmc $g 947307 $s 782611
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 28 $c 3 $d 450-461 $i 1549-4918 $m Stem cells $n Stem Cells $x MED00004436
- GRA __
- $a NR9508 $p MZ0
- LZP __
- $a Pubmed-20120816/10/02