• Something wrong with this record ?

Identification of nonlinear oscillatory activity embedded in broadband neural signals

M. Vejmelka, M. Palus, K. Susmáková,

. 2010 ; 20 (2) : 117-28.

Language English Country Singapore

Document type Journal Article, Research Support, Non-U.S. Gov't

Oscillatory phenomena in the brain activity and their synchronization are frequently studied using mathematical models and analytic tools derived from nonlinear dynamics. In many experimental situations, however, neural signals have a broadband character and if oscillatory activity is present, its dynamical origin is unknown. To cope with these problems, a framework for detecting nonlinear oscillatory activity in broadband time series is presented. First, a narrow-band oscillatory mode is extracted from a broadband background. Second, it is tested whether the extracted mode is significantly different from linearly filtered noise, modelled as a linear stochastic process possibly passed through a static nonlinear transformation. If a nonlinear oscillatory mode is positively detected, further analysis using nonlinear approaches such as the phase synchronization analysis can potentially bring new information. For linear processes, however, standard approaches such as the coherence analysis are more appropriate and provide sufficient description of underlying interactions with smaller computational effort. The method is illustrated in a numerical example and applied to analyze experimentally obtained human EEG time series from a sleeping subject.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12025778
003      
CZ-PrNML
005      
20121207110242.0
007      
ta
008      
120817s2010 si f 000 0#eng||
009      
AR
024    7_
$a 10.1142/s0129065710002309 $2 doi
035    __
$a (PubMed)20411595
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a si
100    1_
$a Vejmelka, Martin $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic. vejmelka@cs.cas.cz
245    10
$a Identification of nonlinear oscillatory activity embedded in broadband neural signals / $c M. Vejmelka, M. Palus, K. Susmáková,
520    9_
$a Oscillatory phenomena in the brain activity and their synchronization are frequently studied using mathematical models and analytic tools derived from nonlinear dynamics. In many experimental situations, however, neural signals have a broadband character and if oscillatory activity is present, its dynamical origin is unknown. To cope with these problems, a framework for detecting nonlinear oscillatory activity in broadband time series is presented. First, a narrow-band oscillatory mode is extracted from a broadband background. Second, it is tested whether the extracted mode is significantly different from linearly filtered noise, modelled as a linear stochastic process possibly passed through a static nonlinear transformation. If a nonlinear oscillatory mode is positively detected, further analysis using nonlinear approaches such as the phase synchronization analysis can potentially bring new information. For linear processes, however, standard approaches such as the coherence analysis are more appropriate and provide sufficient description of underlying interactions with smaller computational effort. The method is illustrated in a numerical example and applied to analyze experimentally obtained human EEG time series from a sleeping subject.
650    _2
$a biologické hodiny $x fyziologie $7 D001683
650    _2
$a mozek $x fyziologie $7 D001921
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a lidé $7 D006801
650    _2
$a modely neurologické $7 D008959
650    _2
$a nelineární dynamika $7 D017711
650    _2
$a počítačové zpracování signálu $7 D012815
650    _2
$a spánek $x fyziologie $7 D012890
650    _2
$a spektrální analýza $7 D013057
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Palus, Milan
700    1_
$a Susmáková, Kristína
773    0_
$w MED00002342 $t International journal of neural systems $x 0129-0657 $g Roč. 20, č. 2 (2010), s. 117-28
856    41
$u https://pubmed.ncbi.nlm.nih.gov/20411595 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m
990    __
$a 20120817 $b ABA008
991    __
$a 20121207110316 $b ABA008
999    __
$a ok $b bmc $g 947820 $s 783124
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 20 $c 2 $d 117-28 $i 0129-0657 $m International journal of neural systems $n Int J Neural Syst $x MED00002342
LZP    __
$a Pubmed-20120817/10/03

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...