-
Something wrong with this record ?
Terminal restriction fragment length measurement errors are affected mainly by fragment length, G+C nucleotide content and secondary structure melting point
P. Bukovská, M. Jelínková, H. Hrselová, Z. Sýkorová, M. Gryndler,
Language English Country Netherlands
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Amplified Fragment Length Polymorphism Analysis methods standards MeSH
- DNA, Fungal chemistry genetics MeSH
- Fungi chemistry genetics isolation & purification MeSH
- Nucleic Acid Conformation MeSH
- Phalaris microbiology MeSH
- Polymorphism, Restriction Fragment Length MeSH
- Transition Temperature MeSH
- Base Composition MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Several methods of molecular analysis of microbial diversity, including terminal restriction fragment length polymorphism (T-RFLP) analysis are based on measurement of the DNA fragment length. Significant variation between sequence-determined and measured length of restriction fragments (drift) has been observed, which can affect the efficiency of the identification of microorganisms in the analyzed communities. In the past, this variation has been attributed to varying fragment length and purine content. In this study, principal component analysis and multiple regression analysis were applied to find the contributions of those and several other fragment characteristics. We conclude that secondary structure melting point and G+C nucleotide content, besides the fragment length, contribute to the variation observed, whereas the contribution of purine content is less important. Incomplete denaturation of the sample at the start of electrophoretic separation of fragments has been excluded as a major cause of the variation observed. Our regression model explains the observed drift variation by approximately 56%, with standard deviation of the prediction equal to approximately 1.3 bp.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026281
- 003
- CZ-PrNML
- 005
- 20121210094408.0
- 007
- ta
- 008
- 120817e20100623ne f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.mimet.2010.06.007 $2 doi
- 035 __
- $a (PubMed)20600364
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Bukovská, Petra $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ25243 Průhonice, Czech Republic. p.bukovska@email.cz
- 245 10
- $a Terminal restriction fragment length measurement errors are affected mainly by fragment length, G+C nucleotide content and secondary structure melting point / $c P. Bukovská, M. Jelínková, H. Hrselová, Z. Sýkorová, M. Gryndler,
- 520 9_
- $a Several methods of molecular analysis of microbial diversity, including terminal restriction fragment length polymorphism (T-RFLP) analysis are based on measurement of the DNA fragment length. Significant variation between sequence-determined and measured length of restriction fragments (drift) has been observed, which can affect the efficiency of the identification of microorganisms in the analyzed communities. In the past, this variation has been attributed to varying fragment length and purine content. In this study, principal component analysis and multiple regression analysis were applied to find the contributions of those and several other fragment characteristics. We conclude that secondary structure melting point and G+C nucleotide content, besides the fragment length, contribute to the variation observed, whereas the contribution of purine content is less important. Incomplete denaturation of the sample at the start of electrophoretic separation of fragments has been excluded as a major cause of the variation observed. Our regression model explains the observed drift variation by approximately 56%, with standard deviation of the prediction equal to approximately 1.3 bp.
- 650 _2
- $a analýza polymorfismu délky amplifikovaných restrikčních fragmentů $x metody $x normy $7 D054458
- 650 _2
- $a zastoupení bazí $7 D001482
- 650 _2
- $a DNA fungální $x chemie $x genetika $7 D004271
- 650 _2
- $a houby $x chemie $x genetika $x izolace a purifikace $7 D005658
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a Phalaris $x mikrobiologie $7 D031783
- 650 _2
- $a polymorfismus délky restrikčních fragmentů $7 D012150
- 650 _2
- $a tranzitní teplota $7 D044366
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jelínková, Markéta
- 700 1_
- $a Hrselová, Hana
- 700 1_
- $a Sýkorová, Zuzana
- 700 1_
- $a Gryndler, Milan
- 773 0_
- $w MED00002803 $t Journal of microbiological methods $x 1872-8359 $g Roč. 82, č. 3 (20100623), s. 223-8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20600364 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20121210094445 $b ABA008
- 999 __
- $a ok $b bmc $g 948323 $s 783627
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 82 $c 3 $d 223-8 $e 20100623 $i 1872-8359 $m Journal of microbiological methods $n J Microbiol Methods $x MED00002803
- LZP __
- $a Pubmed-20120817/10/04