-
Je něco špatně v tomto záznamu ?
Spectra of linear energy transfer and other dosimetry characteristics as measured in C290 MeV/n MONO and SOBP ion beams at HIMAC-BIO (NIRS, Japan) with different detectors
F. Spurný, K. Pachnerová Brabcová, O. Ploc, I. Ambrožová, Z. Mrázová
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články
PubMed
21245064
DOI
10.1093/rpd/ncq532
Knihovny.cz E-zdroje
- MeSH
- analýza selhání vybavení MeSH
- částice - urychlovače přístrojové vybavení MeSH
- design vybavení MeSH
- lineární přenos energie MeSH
- radiometrie přístrojové vybavení MeSH
- radioterapie těžkými ionty MeSH
- těžké ionty MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- srovnávací studie MeSH
- Geografické názvy
- Japonsko MeSH
Active mobile dosimetry unit (Liulin), passive plastic nuclear track detectors (PNTD) and thermoluminescent detectors (TLD) were exposed in a C290 MeV/n beam at HIMAC-BIO (NIRS, Japan). Two different types of beam configuration were used--monoenergetic beam (MONO) and spread-out Bragg peak (SOBP); the detectors were placed at several depths from the entrance up to the depths behind the Bragg peak. Relative response of TLDs in beams has been studied as a function of the depth, and it was re-proved that it can depend on the linear energy transfer (LET). Liulin measures energy deposition in Si; the spectra of energy deposited in Si can be transformed to the spectra of lineal energy or LET. PNTDs are able to determine the LET of registered particles directly. The limitation of both methods is in the range in which they can determine the LET-Liulin is able to measure perpendicularly incident charged particles up to ∼35 keV/µm (in water), PNTD can measure from ∼7 to 400 keV/µm, independently of the registration angle. The results from both methods are compared and combined for both beams' configuration, and a good agreement is observed.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12027114
- 003
- CZ-PrNML
- 005
- 20160417111507.0
- 007
- ta
- 008
- 120816s2011 enk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1093/rpd/ncq532 $2 doi
- 035 __
- $a (PubMed)21245064
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Spurný, František, $d 1942-2010 $7 jn20000710580 $u Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Na Truhlářce 39/64, 18086 Praha 8, Czech Republic
- 245 10
- $a Spectra of linear energy transfer and other dosimetry characteristics as measured in C290 MeV/n MONO and SOBP ion beams at HIMAC-BIO (NIRS, Japan) with different detectors / $c F. Spurný, K. Pachnerová Brabcová, O. Ploc, I. Ambrožová, Z. Mrázová
- 520 9_
- $a Active mobile dosimetry unit (Liulin), passive plastic nuclear track detectors (PNTD) and thermoluminescent detectors (TLD) were exposed in a C290 MeV/n beam at HIMAC-BIO (NIRS, Japan). Two different types of beam configuration were used--monoenergetic beam (MONO) and spread-out Bragg peak (SOBP); the detectors were placed at several depths from the entrance up to the depths behind the Bragg peak. Relative response of TLDs in beams has been studied as a function of the depth, and it was re-proved that it can depend on the linear energy transfer (LET). Liulin measures energy deposition in Si; the spectra of energy deposited in Si can be transformed to the spectra of lineal energy or LET. PNTDs are able to determine the LET of registered particles directly. The limitation of both methods is in the range in which they can determine the LET-Liulin is able to measure perpendicularly incident charged particles up to ∼35 keV/µm (in water), PNTD can measure from ∼7 to 400 keV/µm, independently of the registration angle. The results from both methods are compared and combined for both beams' configuration, and a good agreement is observed.
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a analýza selhání vybavení $7 D019544
- 650 _2
- $a těžké ionty $7 D020450
- 650 _2
- $a lineární přenos energie $7 D018499
- 650 _2
- $a částice - urychlovače $x přístrojové vybavení $7 D010315
- 650 _2
- $a radiometrie $x přístrojové vybavení $7 D011874
- 650 _2
- $a radioterapie těžkými ionty $7 D063193
- 651 _2
- $a Japonsko $7 D007564
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Pachnerová Brabcová, K.
- 700 1_
- $a Ploc, Ondřej $7 xx0171641
- 700 1_
- $a Ambrožová, Iva $7 _AN059503
- 700 1_
- $a Mrázová, Z
- 773 0_
- $w MED00004029 $t Radiation protection dosimetry $x 1742-3406 $g Roč. 143, č. 2-4 (2011), s. 519-522
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21245064 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160417111554 $b ABA008
- 999 __
- $a ok $b bmc $g 949156 $s 784460
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 143 $c 2-4 $d 519-522 $e 20110118 $i 1742-3406 $m Radiation protection dosimetry $n Radiat Prot Dosimetry $x MED00004029
- LZP __
- $b NLK122 $a Pubmed-20120816/11/02